
プログラミング演習（JavaScript）① 基本構造、配列、関数、探索、整列

■配布ファイル

１．HTMLファイルの場合

 この演習では、主に HTML ファイルに JavaScriptのコードを書いていく。コードは「Script」タグの中に

コードを書いていく。Script タグは head タグでも body タグの中であれば動くが、多くの場合 body の

終了タグの直前に記述する。

js0-1.htm

２．順次配列

上から順に実行している。文字列を開業するとき、改行コード\n を入れる。js1-1-2 のように、文字列

を指定する「’（シングルコーテーション）」の中に
を入れても改行されない。

js1-1.htm

js1-1-2.htm

001

002

003

004

005

006

007

008

009

010

011

012

<!DOCTYPE html>

<html lang = "ja">

 <head>

 <meta charset = "utf-8">

 <title>ここにタイトルを記述する</title>

 </head>

 <body>

 <script>

 //ここにプログラムを記述する

 </script>

 </body>

</html>

008

009

010

011

012

013

＜略＞

 <script>

 var a = prompt('名前を入力してください','');

 var b = 'Hello, world!\n'+ 'こんにちは、'+ a +'さん';

 alert(b);

 document.write(b);

 </script>

＜略＞

008

＜略＞

 <script>

２．選択構造

点数と合格点を入力して、点数が合格点より低かったら、不合格、そうでなかったら合格を表示させる。

switch文を使って選択構造を作ることもある。（変数が０だったら不合格、１だったら合格のような文）

js1-2.htm

３．反復構造

I で１から指定した数まで１ずつ増やし、ｋにｋ＋i を代入して和を求めている。 ｓで文字列を結合させて、式

を作っている。

js1-３.htm

なお、JavaScriptファイルの拡張子は.jsとし、JavaScriptファイルに書くコードは scriptタグでは囲ま

ない。

009

010

011

012

013

014

 var a = prompt('名前を入力してください','');

 var b = 'Hello, world!
'+ 'こんにちは、'+ a +'さん';

 alert(b);

 document.write(b);

 </script>

＜略＞

009

010

011

012

013

014

015

 var a = Number(prompt('点数の入力',''));

 var b = Number(prompt('合格点の入力',''));

 if(a < b){

 alert('残念！不合格です');

 }else{

 alert('おめでとう！合格です');

 }

009

010

011

012

013

014

015

016

017

018

 var n = Number(prompt('１から Nまでの和を求める\n'+'Nを入力',''));

 var s = 0;

 var k = 0;

 for(var i =1 ; i < n ; i++){

 s= s + i+'＋';

 k= k + i;

 }

 s= s + n;

 k= k + n;

 alert(s+'＝'+k);

２．配列

複数の値を含素の名前で管理するのではなく、一つの名前で管理する。例えば、月の名前を管理するとき

に、a=’Jan’ , b=’Ｆｅｂ’ , c=’mar’ とするのではなく、a[0]=’Jan’ , a[1]=’Feb’ ,

a[2]=’Mar’ と変数に添え字（インデックス）を付けて値（要素）を管理をする。 １つの添え字で指定する

配列を１次元配列と言い、２つの添え字で指定する配列を１次元配列と言う。

●１次元配列

a[0] a[1] a[2]

Jan Feb Mar

●１次元配列の宣言例

●２次元配列

a[0,0] a[0,1] a[０，2]

a[1,0] a[1,1] a[2，2]

a[2,0] a[2,1] a[2，2]

Jan Feb Mar

Apr May Jun

Jul Aug Sep

●２次元配列の宣言例

001 var a = ['Jan','Feb','Mar']；

001

002

003

004

var a = []；

a[0]='Jan'；

a[0]='Feb '；

a[0]=' Mar '；

001

002

003

004

var a = []；

a.push('Jan')；

a.push('Feb')；

a.push('Mar')；

001 var a = [['Jan','Feb','Mar'] , ['Apr','May','Jun'] , ['Jul','Aug','Sep']]；

例 １，２，３を横と縦に並べる

 js2-1.htm

結果

●２次元配列

GREEN TEA MANDARA(http://kadode-ooigawa.jp/green_tea_mandara/) を参考にして、表を作る

表 GREEN TEA MANDARA

 ｊ

 0 1 2 3

i

0 I Ho Ri Wa

1 Ro He Nu Ka

2 Ha To Ru Yo

3 Ni Chi Wo Ta

009

010

011

012

013

014

015

016

 var a = [1,2,3];

 for(var i =0 ; i < 3 ; i++){

 document.write(a[i]+' ');

 }

 document.write('

');

 for(var i =0 ; i < 3 ; i++){

 document.write(a[i]+'
');

 }

js2-2.htm

■結果

例 タグを入れて表を作る

js2-2-2.htm

009

010

011

012

013

014

015

016

017

018

019

020

021

 var a =

 [

 ['I ','Ho','Ri','Wa'],

 ['Ro','He','Nu','Ka'],

 ['Ha','To','Ru','Yo'],

 ['Ni','Chi','Wo','Ta'],

];

 for(var i=0; i<4; i++){

 for(var j=0; j<4 ; j++){

 document.write(a[i][j] +' ');

 }

 document.write('
');

 }

009

010

011

012

013

014

015

016

017

018

019

020

021

022

 var a =

 [

 ['I',' Ho','Ri','Wa'],

 ['Ro',' He','Nu','Ka'],

 ['Ha',' To','Ru','Yo'],

 ['Ni','Chi','Wo','Ta'],

];

 document.write('<table border="1">');

 for(var i=0; i<4; i++){

 document.write('<tr>');

 for(var j=0; j<4 ; j++){

 document.write('<td width="30" height="30" align="center">' + a[i][j] + '</td>');

 }

 document.write('</tr>');

■結果

●関数

ここでは、入力した火入れと蒸しの２つの数を引数にして、二次元配列から、茶葉の種類、お湯の温度、抽出

時間をさんしょうして、配列変数 kekkaで返す関数を作る。

 mushi

 0 1 2 3 ４

hiire

0 I Ho Ri Wa 70

1 Ro He Nu Ka 70

2 Ha To Ru Yo 90

3 Ni Chi Wo Ta 90

４ 90 90 60 60

js3-1.htm

023

024

 }

 document.write('</table>');

009

010

011

012

013

014

015

016

017

function mandara($hiire,$mushi){

 var a=

 [

 ['I','Ho','Ri','Wa','70'],

 ['Ro','He','Nu','Ka','70'],

 ['Ha','To','Ru','Yo','90'],

 ['Ni','Chi','Wo','Ta','90'],

 ['90','90','60','60',''],

];

お湯の温度

抽出時間

■ 火入れ１、蒸し２を入力した結果

４．探索

背番号を検索して、選手名と何番目に位置しているかを表示させる

 i=0 i=1 i=2 i=3 i=4

a[0][i] 6 7 2 8 3

a[1][i] 坂本龍太 松原忠史 大城平三 梶谷城 岡本綺太郎

a[0][i]を順に見ていき、指定した値と同じだったら、番号や a[1][i]の値を返す。

検索する値を２とすると、i=0から１ずつ増やして、a[0][i]のと同じになったら、ｊの値を返す

 ｊ＝1 ｊ＝2 ｊ＝3

 i=0 i=1 i=2 i=3 i=4

a[0][i] 6 7 2 8 3

a[1][i] 坂本龍太 松原忠史 大城平三 梶谷城 岡本綺太郎

018

019

020

021

022

023

024

025

026

027

 var chaba = a[$hiire][$mushi];

 var ondo = a[$hiire][4];

 var jikan = a[4][$mushi];

 return[chaba,ondo,jikan];

};

var hiire = Number(prompt('火入れ（0から 3までの数字を入力してください）' , ''));

var mushi = Number(prompt('蒸し（0から 3までの数字を入力してください）' , ''));

var kekka = mandara(hiire,mushi);

document.write('

あなたが選んだお茶のタイプは「'+ kekka[0] + '」');

document.write('
お湯の温度は' + kekka[1] +'℃、抽出時間は'+ kekka[2] + '秒です。');

２？

６×

２？

７×

２？

２〇

●順次探索

js４-1.htm

参考 選手成績（2021年 4月 23日現在）

https://www.giants.jp/smartphone/G/report/batter.html

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

 var a =

 [

 ['6','7','2','8','3'],

 ['坂本龍太','松原忠史','大城平三','梶谷城','岡本綺太郎']

];

 var n = a[0].length;

 var msg = '打順 背番号 選手名¥n';

 for (var i = 0 ; i < n ; i++) {

 j=i+1;

 msg = msg + j + ' ' + a[0][i] + ' ' + a[1][i] + '¥n';

 }

 alert(msg);

 var s = Number(prompt('背番号の入力',''));

 for(i=0; i<n; i++){

 if(a[0][i] == s){

 j=i+1;

 alert('背番号'+s + 'の'+ a[1][i] +'選手の打順は' + j + '番です');

 break;

 }

 }

配列変数の

内容の表示

配列変数の

定義

検索結果の

表示

配列変数の

定義

https://www.giants.jp/smartphone/G/report/batter.html

●２分探索

整列をした状態で使える探索方法。この方法は、候補を半分ずつに減らしていける。

１列目だけ見る

 a[0] a[1] a[2] a[3] a[4]

a[] ２ ３ ６ ７ ８

８を例にして考える

範囲を初めの０と後ろの４にする。（i=0、j=4） すると中央の位置は （i+j） / 2 ＝ ２

a[2]は６なので、８とは違う。

 a[0] a[1] a[2] a[3] a[4]

a[] ２ ３ ６ ７ ８

８は６より大きいので、範囲を真ん中の位置より後ろ半分にする。

iを中央の場所の２＋１の３とする。（もし、指定した値が小さかったら、ｊを中央の場所の２―１の１とする。）

これ以降、前半分は候補から外れる。

 a[0] a[1] a[2] a[3] a[4]

a[] ２ ３ ６ ７ ８

３と４の中央の場所は（３＋４）＝３．５で小数になるが、Math.floor に入れているので切り捨てられて３に

なる。

a[３]は７で８ではない。

 a[0] a[1] a[2] a[3] a[4]

a[] ２ ３ ６ ７ ８

８は７より大きいので、iは４になる。４＋４／２ ＝４ なので、中央の位置は４

 a[0] a[1] a[2] a[3] a[4]

a[] ２ ３ ６ ７ ８

a[４]＝８なので、８が探索できた。 何番目か表示させるため、junにｍ＋１を代入して、打順を表示させた

８？

６×

i＝３

８？

６×

i＝0 ｊ＝４

ｊ＝４

ｊ＝４

ｊ＝４ i＝４

ｍ＝(ｉ＋ｊ)/２

＝3.5→３

ｍ＝(ｉ＋ｊ)/２

＝２

js４-２.htm

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

 var a =

 [

 ['2','3','6','7','8'],

 ['大城平三','岡本綺太郎','坂本龍太','松原忠史','梶谷城']

];

 var n = a[0].length;

 var msg = '順番 背番号 選手名¥n';

 for (var i = 0 ; i < n ; i++) {

 jun =i+1;

 msg = msg + jun + ' ' + a[0][i] + ' ' + a[1][i] + '¥n';

 }

 alert(msg);

 var s = Number(prompt('背番号を入力してください',''));

 i = 0;

 var j = n - 1;

 while(i <= j){

 var m = Math.floor((i + j) / 2);

 if(a[0][m] == s){

 jun=m+1

 alert('背番号' + s + 'の' + a[1][m] + 'は' + jun + '番です。');

 break;

 }

 if(a[0][m] > s){

 j = m - 1;

 }else{

 i = m + 1;

 }

 }

●整列 交換法（バブルソート）①

整列のアルゴルズムは交換法以外にもあり、交換法は理解がしやすいが処理に時間がかかるアルゴリズムで

ある。下記のリンクを参考にするとよいだろう。

※整列のアルゴリズムの比較

Visualization and Comparison of Sorting Algorithms

https://youtu.be/ZZuD6iUe3Pc

ここでは、一番後ろから隣り合ったものを比べて、前の位置の値が大きかったら入れ替える。比べる場所を

一つ前にして同じようなことを繰り返していくと、一番手前に、一番前に一番小さな値が来る。

次に一番後ろから前から２番目まで暗い返すと、整列される。

a[0] a[1] a[2] a[3] a[4]

6 7 2 8 3

１番後ろから隣り合った値を比べ、手前が大きかったら入れ替える。ここでは、手前の８の方が大きいので、

入れ替えている。

6 7 2 3 8

次の隣り合った値を比べて、同じ処理をしていく。ここでは、手前の２の方が小さいので入れ替えない。

6 7 2 3 8

７の方が大きいので入れ替える。

6 2 7 3 8

６の方が大きいので入れ替える。１番手前の２が確定する。

2 6 7 3 8

１番後ろに戻って、２番目まで比べていく（比較する回数を１回減らす）。３の方が小さいので入れ替えない。

2 6 7 3 8

７の方が大きいので入れ替える。

2 6 3 7 8

６の方が大きいので入れ替える。２番目の３が確定する

2 3 6 7 8

１番後ろに戻って、３番目まで比べていく。７の方が小さいので入れ替えない。

2 3 6 7 8

６の方が小さいので入れ替えない。３番目が確定する。

2 3 6 7 8

１番後ろに戻って、４番目まで比べていく。７の方が小さいので入れ替えない。４番目、５番目が確定する。

2 3 6 7 8

js5-1

https://youtu.be/ZZuD6iUe3Pc

●整列 交換法①‘

比べる方向を変える。１番手前から隣り合った値を比べ、手前が大きかったら入れ替える。ここでは、手前

の６の方が小さいので、入れ替えない。

6 7 2 3 8

次の隣り合った値を比べて、同じ処理をしていく。ここでは、手前の７の方が大きいので入れ替える。それ

を繰り返していく。

6 ２ ７ 3 8

６ ２ ３ ７ ８

６ ２ ３ ７ ８

１番後ろの位置の値に１番大きな値がくる。１番初めに戻って、処理を繰り返す。

２ ６ ３ ７ ８

２ ３ ６ ７ ８

２ ３ ６ ７ ８

２ ３ ６ ７ ８

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

 var a = ['6','7','2','8','3'];

 var n = a.length;

 var msg = '整列前¥n通し番号 背番号¥n';

 for (i = 0 ; i < n ; i++) {

 var jun = i+1

 msg = msg + jun + ' ' + a[i] + '¥n';

 }

 alert(msg);

 for (i = 0 ; i < n-1 ; i++) {

 for(var j = n-2 ; j > i-1 ; j--) {

 if(a[j] > a[j+1]){

 var temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 }

 }

 }

 var msg = '整列後¥n通し番号 背番号¥n';

 for (i = 0 ; i < n ; i++) {

 var jun = i+1

 msg = msg + jun + ' ' + a[i] + '¥n';

 }

 alert(msg);

２ ３ ６ ７ ８

２ ３ ６ ７ ８

js5-1-2

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

 var a = ['6','7','2','8','3'];

 var n = a.length;

 var msg = '整列前¥n通し番号 背番号¥n';

 for (i = 0 ; i < n ; i++) {

 var jun = i+1

 msg = msg + jun + ' ' + a[i] + '¥n';

 }

 alert(msg);

 for (i = 0 ; i < n-1 ; i++) {

 for(var j = i ; j < n-1-i ; j++) {

 if(a[j] > a[j+1]){

 var temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 }

 }

 }

 var msg = '整列後¥n番号 背番号¥n';

 for (i = 0 ; i < n ; i++) {

 var jun = i+1

 msg = msg + jun + ' ' + a[i] + '¥n';

 }

 alert(msg);

