
プログラミング演習（JavaScript）③ 【実践】

ゲームを作るときに、時間を設定して一定の間 隔で動かしたり、アニメーションをさせたりすることがある。

今回は動きのあるプログラムを作るときに使える方法を説明する。

11 一定の時間間隔で、位置の移動をする■オブジェクト指向プログラミング

 ■setTimeout clearTimeout

setTimeout でタイマー処理を実行し、 clearTimeout でタイマー処理を取り消す。 setTimeout

は、 第２引数に与えられた時間 で、第１引数に指定した関数を実行するもの で 、 時間の単位はミリ秒と

なる。 今回のプログラムは、位置が左から３００を超える ま で の間、100 ミリ秒＝0.1 秒間隔 で 、 位

置 が 右 へ 20移動させてお り、 clearTimeout は 使っていない 。

setTimeout(処理内容，待ち時間) 待ち時間になると関数または指定されたコードの

断片を実行する

clearTimeout(ID) setTimeout() の呼び出しによって以前に確立

されたタイムアウトを解除する

ｊs11-1.htm setTimeout（）メソッドを使って画像を移動する

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

 <script>

 window.onload=function(){

let gazo=document.getElementById("img1");

 let x=50;

 function move(){

 gazo.style.left=x+"px";

 x=x+20;

 if(x<=300){

 setTimeout(move,100);

 }

 }

 move();

 }

 </script>

８行 CSSでレイアウトの設定をする

１０行 読み込まれると実行する

１１行 ID名が「img1」の画像を変数 gazo に格納する

12行 最初に左側からの距離を設定する

１３～１８行 move 関数

 １４行 gazoの左からの距離を xピクセルにする

 １５行 ｘにｘ＋２０を代入する

 １６行 ３００以下まで１５行を繰り返す

 １７行 ０．１秒待って move 関数を実行する。 ※距離が 300 以下の状態で再帰的に move 関数が

実行される

 １８行 最初にmove関数を実行する

■ setInterval, clearInterval

ここでは、setInterval を使って画像を動かす。ボールをクリックしたときに、現在の時刻を取得して、

2000 ミリ秒（２秒）超えるまで描画が繰り返し行われ、２秒超えたら clearInterval でタイマー処理を取り

消している。

setInterval(関数 処理間隔) 一定の遅延間隔を置いて関数やコードスニペット

を繰り返し呼び出します

clearInterval（ID） 以前に setInterval() の呼び出しによって確立

されたタイマーを利用した繰り返し動作を取り消す

ｊs11-2.htm setInterval（）メソッドを使って、画像を移動する

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

 <img id="img2" style="position:relative; cursor: pointer; top:50px;"

src="js11ball.png">

 <script>

 img2.onclick = function() {

 let start = Date.now();

 let timer = setInterval(function() {

 let timePassed = Date.now() - start;

 img2.style.left = timePassed / 5 + 'px';

 if (timePassed > 2000) clearInterval(timer);

 }, 20);

 }

 </script>

（参考）JAVASCRRIPT.INFO JavaScript アニメーション（2021 年 12 月 15 日）

https://ja.javascript.info/js-animation

８行 画像の設定をする ID名は img2 位置は相対的、カーソルはポインター、上から５０ピクセルの場所

に画像を表示する

１０行 img2の画像をクリックすると実行する。ここでは、クリックした後に実行する関数を、関数名をつけ

て外部に持たせずに、直接＝（イコール）で結んで記述している。

１１行 現在の時刻を取得して変数 start に代入する

１２～１６行 timer に setInterval の内容を入れ、１６行目までの処理を２０ミリ秒（0.02秒）間隔で実行

する。

 １３行 timePassedに経過時間（現在の時刻から start を引いた値）を代入する

https://ja.javascript.info/js-animation

 １４行 img2の左側の位置を timePassedを５で割った値にする

 １５行 timePassedが2000を超えたら（２秒を超えたら）、timer をクリアする

■キーで操作して動かす

 ここでは、押したキーに合わせて画像を動かすプログラムを作る。まず、「キーが押された」とか、「マウスに

よってクリックされた」とか、「フォームで文字が入力された」といった、イベントが発生した時になんらからの

処理をすることを「イベント処理」といい、addEventListener メソッドを使って、イベント処理を行うこと

ができる。

addEventListener(種

類，関数，false);

ターゲットに特定のイベントが配信されるたびに呼び出され

る関数を設定する

第１引数はイベントの種類で、ここに「クリックした」とか「文字を入力した」といったイベントの種類を入れる。

第２引数は第１引数で指定したイベントが発生したときに実行する関数を入れる。

第３引数はイベントの伝搬の方式を指定する場所で、通常は false を指定する。

第１引数のイベントの種類（一部）

click ボタンをクリックしたとき

mousemove カーソルがターゲット内に移動したとき

mouseover カーソルがターゲット内の上に重なったとき

mousedown マウスのボタンを押したとき

mouseup マウスのボタンを離したとき

mouseout カーソルがターゲットから離れたとき

keypress キーを押して離したとき

keydown キーを押したとき

keyup キーを離したとき

第２引数の注意点としては、外部の関数名を指定する場合は（）をつけない。していするのではなく、関数自

体を入れる書き方をする場合は（）をつける。

参考 SAMURAI ENGINNER https://www.sejuku.net/blog/57625

参考 Ｑｉｉｔａ【javascript】addEventListener イベントまとめ

 https://qiita.com/whw3312/items/94a2bdf632ef77555579

Qiita addEventListener type 一覧と各ブラウザ対応

https://qiita.com/mrpero/items/156968e3512d42fffc5e

ｊs11-３.htm キーを押したときに、押したキーの文字コードをポップアップで表示する。

０１０

０１１

０１２

 addEventListener("keydown",keydownfunc);

 function keydownfunc(event) {

 alert(event.keyCode);

https://www.sejuku.net/blog/57625
https://qiita.com/mrpero/items/156968e3512d42fffc5e

０１３ }

１０行 キーが押されたときに keydownfunc メソッドを呼び出す

１１～１３行 keydownfunc 関数

１1 行 event に押されたキーの情報が入る

１２行 keyCode プロパティでキーコードを取得され、押されたキーの文字コードが alert でポップアッ

プに表示される。なお、keyCode プロパティは非推奨です。

ｊs11-4.htm js11-3 のプログラムで、矢印キーのキーコードを記録し、そのキーコードを条件にして、押し

たキーに合わせて、画像を移動させる。

006

007

008

009

０１０

０１１

０１２

０１３

014

015

016

017

018

019

020

021

022

<style>#ball4 {position: absolute; top: 0; left: 0;}</style>

 </head>

<body>

 <script>

 document.write('');

 var y = 0; //ボールの x座標

 var x = 0; //ボールの y座標

 addEventListener("keydown", keydownfunc);

 function keydownfunc(event){

 var key_code = event.keyCode; //キーのコードを key_code に代入

 if(key_code === 37) x = x - 50; //「左ボタン」が押されたとき、xの値か

ら 50を引き算する(x -= 32)

 if(key_code === 38) y = y - 50; //「上ボタン」が押されたとき、y の値か

ら 50を引き算する

 if(key_code === 39) x = x + 50; //「右ボタン」が押されたとき、xの値

に50を足し算する

 if(key_code === 40) y = y + 50; //「下ボタン」が押されたとき、y の値

に50を足し算する

 document.getElementById('ball4').style.left = x + "px";

//ボールの画像の x座標を反映させる

 document.getElementById('ball4').style.top = y + "px";

//ボールの画像の y座標を反映させる

 }

6 行 ｓｔｙｌｅタグにボールのＣＳＳの設定を入れる

１０行 ｉｄ名「ball4」のボールの画像を表示させる(top:0,left:0 なので、左上に表示させる)

１１，１２行 ボールの位置を示す変数ｘ、ｙの設定をする。

１３行 キーが押されたときに keydownfunc関数が実行される

１４～２２行 keydownfunc 関数

１４行 押されたキーの情報をevent に渡す

１５行 キーの文字コードを key_code に代入する

１６～１９行 左：３７ 上：３８ 右：３９ 下：４０のキーコードに合わせて、座標を増減する

２０，２１行 ボールの左からの位置、上からの位置に変えて再描画する

１２ ＣＡＮＶＡＳ

 ＣＡＮＶＡＳは、ブラウザ上で図を描くための仕様で、動かすにはＪａｖａＳｃｒｉｐｔを使って、描画と再描画を繰

り返す必要がある。

ｊs1２-１.htm ＣＡＮＶＡＳで円と四角形を描く

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

 <canvas id="canvas" width="600" height="600">canvas 要素をサポートしていません

</canvas>

 <script>

 const canvas = document.getElementById('canvas'); // canvas 要素への参照の取得

 const ball = canvas.getContext('2d'); // コンテキストの取得

 const square = canvas.getContext('2d'); // コンテキストの取得

 /* 円のコンテキスト設定 */

 ball.strokeStyle = '#000'; // 塗りつぶしは暗めの色

 ball.fillStyle = '#f00'; // 線は赤色

 ball.lineWidth = 1; // 線の幅は5px

 /* 円の描画 */

 ball.beginPath(); // パスの初期化

 ball.arc(50, 50, 30, 0, 2 * Math.PI); // (50, 50)の位置に半径30pxの円

 ball.closePath(); // パスを閉じる

 ball.fill(); // 軌跡の範囲を塗りつぶす

 ball.stroke(); // 枠線を描く

 /* 四角形のコンテキスト設定 */

 square.strokeStyle = '#00f'; // 塗りつぶしは暗めの色

 square.fillStyle = '#0ff'; // 線は赤色

 square.lineWidth = 1; // 線の幅は5px

 /* 四角形の描画 */

 square.beginPath(); // パスの初期化

 square.fillRect(120, 20, 120,60); // (120, 30)の位置に幅 120、高さ 60の長方形

 square.strokeRect(120, 20, 120,60); // 枠線を描く

８行 ＣＡＮＶＡＳ要素を追加して、範囲を幅６００、高さ６００ピクセルする。ＣＡＮＶＡＳにサポートしていない

ブラウザを使っている場合の代替テキストをつけている。

１０行 ＣＡＮＶＡＳ要素が参照できるようにしている。

１１，１２、行 コンテキストを取得して描画できるようにしている。

１４～１６行 コンテキストの設定

１８～２２行 円の描画

２３～２９行 四角形の描画

ｊs1２-２.htm ＣＡＮＶＡＳで描いた円を動かす

ｊｓ１２－１のようにＨＴＭＬ上にＣＡＮＶＡＳ要素を作らずに、ＪａｖａＳｃｒｉｐｔ側から createElement メソッド

を使って CANVAS を作ってから円を描き、window.requestAnimationFrame()メソッドを使って、

繰り返し処理をさせてアニメーションを実現している。

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

 const canvas = document.createElement('canvas'); //CANVAS を作る

 const ball = canvas.getContext('2d'); // コンテキストの取得

 canvas.width=500;

 canvas.height=500;

 document.body.appendChild(canvas);

 let x = 50;

 let y = 50;

 /* コンテキスト設定 */

 ball.strokeStyle = '#000'; // 線の色は黒(#000000 と同意)

 ball.lineWidth = 2; // 線の幅は2px

 ball.fillStyle = '#f00'; // 塗りつぶしは赤（#FF0000 と同意）

 const circleSize =30; //円の半径は30px

//メインループ

function draw() {

 ball.clearRect(0, 0, canvas.width, canvas.height); // 描画内容を消去する

 // x の値を増やして、右に移動する

 x = x + 1

 // 求めた座標に円を描画する。

 ball.beginPath();

 ball.arc(x,y, circleSize, 0, 2 * Math.PI); // (x,y)の位置に半径30pxの円を描く

 ball.fill(); // 軌跡の範囲を塗りつぶす

 ball.stroke(); // 線を描く

 window.requestAnimationFrame(draw);

}

window.requestAnimationFrame(draw);

９行 CANVAS要素を作る

１０行 コンテキストを取得する

１１，１２行 CANVASの幅と高さを設定する

１３行 挿入したCANVASを BODYのノードリストに登録する。

１４、１５行 円を描画する ｘ、ｙ座標の設定をする

１７～２０行 円の設定

２２～３１行 メインループの関数draw

 ２３行 描画されている内容を消す

 ２４行 円を描画する座標を右にずらす

 ２６～２９行 座標に円を描画する

 ３０行 drawの処理が60fpsの速さで繰り返される。

１３ プログラムによる動的シミュレーション

 HTML５の canvas要素と JavaScript を組み合わせて、初速度、角度を決めて、リンゴを飛ばす。ブラ

ウザに図形を描画するには、キャンバスオブジェクトとコンテキストオブジェクトを用いる。

ｊs1３-１.htm 放物運動のシミュレーション

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

０３８

０３９

０４０

 <canvas id = "mycanvas" width = "1000" height = "500">

 canvas に対応したブラウザを使ってください。

 </canvas>

 <script>

 function draw(){

// ＜A＞一定時間ごとに実行させる関数の本体＞↓

 if (0 < x && x < canvas.width && 0 < y && y < canvas.height){

 x = x + vx0 * dt;

 var v1 = vy , v2 = vy - g * dt;

 var r = 20;

 y= y + (v1 + v2) /2.0 * dt;

 vy = v2;

 var msgv0 = '初速度：' + v0

 var msgdeg = '角度 ：' + degrees

 var msgx = 'x：' + Math.round(x)

 var msgy = 'y：' + Math.round(y)

 t = t + dt;

 }else{

 x = x0, y = y0 , vy = vy0, t = t0;

 }

 context.clearRect(0, 0, canvas.width, canvas.height);

 context.beginPath();

 context.arc(x, canvas.height - y, r, 0 , 2*Math.PI, false);

 context.moveTo(x,canvas.height - y - 30);

 context.lineTo(x,canvas.height - y - 10);

 context.closePath();

 context.fillStyle = 'rgb(255,0,0)';

 context.fill();

 context.strokeStyle = 'rgb(0,0,0)';

 context.lineWidth = 2;

 context.stroke();

 context.font = '18px serif'; /* canvas に文字を表示する */

 context.fillStyle = 'rgb(100,100,100)'; /* 文字を少し薄くした */

０４１

０４２

０４３

０４４

０４５

０４６

０４７

０４８

０４９

０５０

０５１

０５２

０５３

０５４

０５５

０５６

０５７

０５８

０５９

０６０

０６１

 context.lineWidth = 0; /* context.strokeText にした時の線の太さ */

 context.fillText(msgv0, 10, 25); /* context.strokeText(msgx, 10, 25); で文字は表示できる */

 context.fillText(msgdeg, 10, 45);

 context.fillText(msgx, 120, 25);

 context.fillText(msgy, 120, 45);

// ＜A＞↑

 }

 var canvas = document.getElementById('mycanvas');

 canvas.style.border = "1px solid #888888"; /* canvas に枠線を付ける 線を薄くした */

 var context = canvas.getContext('2d');

 var timerID = setInterval('draw()',50);

 canvas.width = 1000 , canvas.height = 500;

// ＜B＞変数の初期値設定↓

 var t0 = 0.0, dt = 0.1, g = 9.8;

 var v0 = Number(prompt('初速度を入力してください',''));

 var degrees = Number(prompt('角度°を入力してください',''));

 var vx0 = v0 * Math.cos(degrees * Math.PI /180);

 var vy0 = v0 * Math.sin(degrees * Math.PI /180);

 var x0 = canvas.width / 4, y0 = 3 * canvas.height / 4 ;

 var x = x0 , y = y0, vy = vy0, t = t0;

// ＜B＞↑

８行 canvas要素をブラウザ上に作成する。Id名「ｍｙcanvas」、高さ５００ピクセル、幅１０００ピクセルと

設定する

９行 ｃａｎｖａｓ要素に対応していないブラウザにこの文字列が表示させる

１２～４７行 ５１行目で呼び出す物体の位置を計算して描画をするdraw関数の定義

 １４行 ｘ、ｙの位置が、ｃａｎｖａｓの範囲内なら

１５行 ｘ座標の位置を移動（ｘ（ｔ＋Δｔ）＝ｘ（ｔ）＋ｖｘ０Δｔ）

１６行 v 1 =vy(t) , v2=vy(t)－ gΔｔ

１８行 ｙ（ｔ＋Δｔ）＝ｙ（ｔ）＋1/2（ｖ１＋ｖ2）Δｔ

１９行 v y（ｔ＋Δｔ）＝v2

２０～２４行 表示させる文字列をそれぞれ変数に代入する

２６行 範囲外に出た場合は初期に戻す

２８～３８行 描画する物体の描画

３９～４５行 文字の描画

４８行 キャンバスの取得

４９～５２行 キャンバスの描画

 ５０行 コンテキストの取得

 ５１行 タイマーの設定

 ５２行 キャンバスサイズの設定

５４～６０行 編集の初期値設定

 ５４行 変数の設定

 ５５，５６行 入力した初速度と角度を変数に代入する

 ５７，５８行 入力した値からｘ座標、ｙ座標に分けた速度を代入する

 ５９行 発射地点を設定する

表１３－１ コンテキストオブジェクトのメソッド例

メソッドなど 機能

clearRect(x,t,w,h) canvas 上の指定された四角形の範囲のすべての図形をクリ

ア（消去）する。引数は、四角形の左上のｘ座標、ｙ座標、四角形

の幅ｗ、四角形の高さｈとなっている。

beginPath() 新しいパスを作成する。

※図形の各点をつないだ経路をパスという

arc(x,t,z,s,e,a) 円弧を描く。引数は中心位置の x座標、ｙ座標、半径ｒ、ラジアン

単位で指定した開始角度ｓ、終了角度ｅ（false は時計回り、

true は反時計回り）

closePath() パスを閉じる（最後の座標から、開始座標に向けて線を引く）

fillStyle 色を指定する。’ｒｇｂ（R：赤,G：緑,B：青）の各値は０～２５５で

指定する。

fill() 閉じたパスの内部を塗りつぶす

表１３－２ 関数

関数など 機能

Number 数値に変換

prompt 入力

Math.sin サイン

Math.cos コサイン

Math.PI 円周率

１４ 時間を制御する

ゲーム等で制限時間を設けて点数を競ったり、目標を達成した時の時間を計るときに使う方法を考える。

現在の時刻を格納するのがDate オブジェクトで、現時刻をプラットフォームに依存しない形であらわし

ており、１９７０年１月１日午前０時（UTC）からのミリ秒を表す整数値を記録して、時刻を表している。この値

から getHours() メソッドで「時」、get.

ｊs1４-０.htm Date オブジェクトと各メソッド

００９

０１０

０１１

 let d = new Date();

 alert(d);

 alert(d.getHours()+"時"+d.getMinutes()+"分"+d.getSeconds()+"秒");

９行 Date()オブジェクト（現時刻）の値をｄに代入

１０行 ｄの値（現時刻）を表示

１1 行 現時刻の「時」「分」「秒」を取り出し、〇時〇分〇秒の形で表示する。

１０行の結果

１１行の結果

■ストップウォッチの作成

経過時間を得るには、開始時刻を記録しておき、現時刻との差を取って表示する

ｊs1４-１.htm ストップウォッチ

００５

００６

００７

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

 <style>

 .hyouji{color:#772;font-size:28px;

 background-color:#FFC;

 border:3px solid #660;

 font-family: arial, sans-serif;

 max-width:250px;margin: 0 auto;

 text-align: center;}

 #time{font-size: 32px; margin: 0px 0; margin-top :5px;}

 button {padding: 5px 10px 5px 10px; font-size: 16px;

 border: none; color: #FFF;background-color: #772;

 border-radius: 3px; margin-bottom :5px;}

 button:hover {cursor: pointer; background-color: #DB9;}

 button:disabled {cursor: default;background-color: #DB9;}

 </style>

５～１８行 CSSでボタンや時間を表示する文字の設定をする

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

 <title>14-1</title>

 </head>

<body>

 <div class="hyouji">

 <div id = "time">00:00.000</div>

 <button id="start" onclick="start()">Start</button>

 <button id="stop" onclick="stop() " disabled>Stop</button>

 <button id="reset" onclick="reset()" disabled>Reset</button>

 </div>

 </div>

２２行 ストップウォッチ全体のレイアウトを作るために ID名「hyouji」の div 要素を作る

２３行 ２２行で作ったhyouji の中に、文字を表示させるための ID名「time」のｄiv 要素を作り、初期値を

表示させる

２４～２６行 各ボタンに名前を付けて、クリックしたときにそれぞれの処理をする関数が実行されるように

する

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

<script>

let startButton; // start ボタン

let stopButton; // stop ボタン

let resetButton; // reset ボタン

let showTime; // 表示時間

let timer; // setinterval, clearTimeout で使用

let startTime; // 開始時間

let elapsedTime = 0; // 経過時間

let holdTime = 0; // 一時停止用に時間を保持<body>

３０～３７行 各変数の初期値を設定する

０３８

０３９

０４０

０４１

０４２

０４３

window.onload = function () {

 startButton = document.getElementById("start");

 stopButton = document.getElementById("stop");

 resetButton = document.getElementById("reset");

 showTime = document.getElementById("time");

}

３８行 onloadですべてのDOMツリー構造及び関連リソースが読み込まれた後に３９～４２行が実行さ

れる。

３９行 ID名「start」、「ｓｔｏｐ」、「ｒｅｓｅｔ」、「ｔｉｍｅ」の情報をそれぞれの変数に代入する

０４４

０４５

０４６

０４７

０４８

０４９

０５０

０５１

// スタートボタン押下時

function start(){

 startTime = Date.now(); // 開始時間を現在の時刻に設定

 measureTime(); // 時間計測

 startButton.disabled = true;

 stopButton.disabled = false;

 resetButton.disabled = false;

}

４５～５１行 スタートボタンを押したときに処理をするｓｔａｒｔ()関数

 ４６行 現在の時刻をstartTime 関数に代入する

 ４７行 時間を計測するmeａsureTime関数を呼び出す

 ４８行 スタートボタンの disabled プロパティを true にして、ボタンを無効にする。

 ４９行 ストップボタンの disabled プロパティを false にして、ボタンを有効にする。

 ５０行 リセットボタンの disabled プロパティを false にして、ボタンを無効にする。

０５２

０５３

// ストップボタン押下時

function stop(){

０５４

０５５

０５６

０５７

０５８

０５９

 clearInterval(timer); // タイマー停止

 holdTime += Date.now() - startTime; // 停止時間を保持

 startButton.disabled = false;

 stopButton.disabled = true;

 resetButton.disabled = false;

}

５３～５８行 ストップボタンを押したときの処理の stop()関数

 ５４行 claarInteval で timer のタイマーを停止させる

 ５５行 現在表示させている時間holdTime に、スタートボタンを押してからストップボタンを押すまで

の時間を加える

 ５６行 スタートボタンの disabled プロパティを false にして、ボタンを有効にする。

 ５７行 ストップボタンの disabled プロパティを true にして、ボタンを無効にする。

 ５８行 リセットボタンの disabled プロパティを false にして、ボタンを無効にする。

０６０

０６１

０６２

０６３

０６４

０６５

０６６

０６７

０６８

０６９

// リセットボタン押下時

function reset(){

 clearInterval(timer); // タイマー停止

 elapsedTime = 0; // 変数、表示を初期化

 holdTime = 0;

 showTime.textContent = "00:00.000";

 startButton.disabled = false;

 stopButton.disabled = true;

 resetButton.disabled = true;

}

６１～６９行 リセットボタンを押したときの処理の stop()関数

 ６２行 claarInteval で timer のタイマーを停止させる

 ６３、６４行 経過時間、保持時間ともに０にする

 ６５行 時間の表示を最初に戻す

 ６６行 スタートボタンの disabled プロパティを false にして、ボタンを有効にする。

 ６７行 ストップボタンの disabled プロパティを true にして、ボタンを無効にする。

 ６８行 リセットボタンの disabled プロパティを false にして、ボタンを無効にする。

０７０

０７１

０７２

０７３

０７４

０７５

// 時間を計測

function measureTime() {

 timer = setTimeout(function () { // タイマーを設定

 elapsedTime = Date.now() - startTime + holdTime; // 経過時間を設定し、画面へ表示

 showTime.textContent = new Date(elapsedTime).toISOString().slice(14, 23);

 measureTime(); // 関数を呼び出し、時間計測を継続する

０７６

０７７

 }, 10);

}

７１～７６行 時間を計測するmeasureTimer 関数

 ７２行 ７５行で設定した１０ミリ秒（０．０１秒）になると function()｛７３～７５行｝を実行し、タイマーをコ

ントロールできるようにそれを timer に代入している

 ７３行 経過時間＝現在の時間―開始した時間＋保持している時間

 ７４行 new Date()で本日の時刻を取得する。toISOString() メソッドは、簡潔な拡張表記の ISO

形式 (ISO 8601) の文字列を返し、例えば「2023-04-17T01:52:26.878Z」を戻す。常に 24 文

字または 27 文字の長さになり、それぞれ、YYYY-MM-DDTHH:mm:ss.sssZ または ±YYYYYY-

MM-DDTHH:mm:ss.sssZ となる。なお、UTCエリア以外では正しくない日付を戻す、slice()は文字列

の一部分を取り出し、それを新しい文字列として返す。例えば「52:26.878」つまり、現在経過時間の範囲

指定した時、分、秒の文字列を showTime.textContent に代入する

参考 ストップウォッチの作り方

https://nyanblog2222.com/programming/javascript/4829/

https://nyanblog2222.com/programming/javascript/4829/

■タイマーの作成

残り時間を得るには、設定した時間から、開始時刻を記録しておき、現時刻との差を取って表示する

ｊs1４-２.htm タイマー

ｊｓ１４－１と同様に５～１８行 CSSでボタンや時間を表示する文字の設定をする

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

<div class="hyouji">

<div id="timer">00:00</div> <!-- タイマーの表示部分 -->

<div id="controls"> <!-- ボタンコントロール部分 -->

 <div class="box">

 <button id="min">分</button>

 <button id="sec">秒</button>

 </div>

 <div class="box">

 <button id="start">スタート</button>

 <button id="reset">リセット</button>

 </div>

</div>

</div>

２１行 タイマー全体を表示する ID名「hyouji」の div 要素を追加する

２２行 タイマーの時間を表示する ID名「timer」のｄｉｖ要素を追加し、初期値の００：００を表示する

２３行 タイマーの分と秒の設定をするボタン全体を表示する ID名「controls」のｄｉｖ要素を追加する

２４、２８行 controls の div 要素の中に「分」と「秒」、「スタート」と「リセット」のボタンを２つ表示させる

class 名ボックスを追加する

２５、２６行 分と秒のボタンを作り、分には ID名「ｍｉｎ」、秒にはＩＤ名「ｓｅｃ」をつける

２９、３０行 スタートとリセットのボタンを作り、スタートにはＩＤ名「start」、リセットには ID名「reseｔ」をつ

ける。

０３５

０３６

０３７

０３８

０３９

０４０

０４１

０４２

０４３

０４４

０４５

(function () { //即時関数

 let timer = document.getElementById('timer');

 let min = document.getElementById('min');

 let sec = document.getElementById('sec');

 let start = document.getElementById('start');

 let reset = document.getElementById('reset');

 let startTime; // スタートタイムを押した時の時間を入れる変数

 let timeLeft; // 残り時間を計算するための変数

 let timeToCountDown = 0; // タイマーに設定された時間

 let timerId; // clearTimeout メソッドを使いたいので、その時用に変数定義

 let isRunning = false; //カウントダウンの状態を管理できるようにする変数

３５～１１２行 即時関数。関数を定義すると同時に実行する。

３５～３９行 タイマーの数値の表示場所を ID名「timer」、４つのボタンのＩＤ名は、分を「min」、秒を

「sec」、スタートを「ｓｔａｒｔ」、リセットを「reset」っと設定する。

４０～４４行 各変数の宣言

０４６

０４７

０４８

０４９

０５０

０５１

０５２

０５３

０５４

０５５

function updateTimer(t) { // 残り時間を表示するために、ミリ秒を渡すと、分や秒に直してくれる関数

 let d = new Date(t); // 引数として渡された tで、変数dと名前を付けてデータオブジェクトを作る

 let m = d.getMinutes();

 let s = d.getSeconds();

 m = ('0' + m).slice(-2);

 s = ('0' + s).slice(-2);

 timer.textContent = m + ':' + s;

 let title = timer.textContent = m + ':' + s;; // タイマーをタブにも表示する

 document.title = title;

 }

４６行 残り時間を幼児するupdateTimer（）関数。返り値はｔ

４７～４９行 ｄに現在の時刻、そこからｍには分、ｓには秒を代入する

５０、５１行 ２けたになるように整える

５２行 「ｍｍ：ｓｓ」の形でＩＤ名「timer」に表示する

５３、５４行 ５２行目と同じようにタイトルバーに表示する

０５６

０５７

０５８

０５９

０６０

０６１

０６２

０６３

０６４

０６５

０６６

０６７

０６８

０６９

０７０

０７１

 function countDown() {

 timerId = setTimeout(function () { // 10 ミリ秒後に実行する

 timeLeft = timeToCountDown - (Date.now() - startTime); // 残り時間 = カウントされる時間

- 現在時刻

 if (timeLeft < 0) { // 残り時間が0になった時の処理

 isRunning = false;

 start.textContent = 'スタート';

 clearTimeout(timerId);

 timeLeft = 0;

 timeToCountDown = 0;

 updateTimer(timeLeft);

 return;

 }

 updateTimer(timeLeft)

 countDown(); // countDownを再帰的に呼び出すために記述

 }, 10);

 }

５６～７１行 カウントダウンをする contDown関数

57行 ５８～６９行の処理を１０ミリ秒（０．０１秒）間隔で実行する。制御ができるように、timerId変数に代

入している

５８行 残り時間＝タイマーに設定された時間ー現在の時間

５９～６７行 残り時間が０になった時の処理

 ６０行 実行されているか判別する isRunningを false にする

 ６１行 スタートボタンにスタートという文字を表示する

 ６２行 timerId のタイマーの設定を外す

６９行 countDownを再帰的に繰り返し呼び出す

０７２

０７３

０７４

０７５

０７６

０７７

０７８

０７９

０８０

０８１

０８２

０８３

０８４

 start.addEventListener('click', function () { // スタートを押したときの処理

 if (isRunning === false) {

 isRunning = true;

 start.textContent = 'ストップ';

 startTime = Date.now();

 countDown(); // カウントダウンの機能は再帰的に実行

 } else {

 isRunning = false;

 start.textContent = 'スタート'; // 表記を Start に戻す

 timeToCountDown = timeLeft; // この時点の timeLeft で更新してあげる

 clearTimeout(timerId); // カウントを止めたいので clearTimeout する

 }

 });

７２～８４行 スタートボタンを押したときの処理

 ７３～７７行 実行しているときの処理

 ７８～８３行 実行していないときの処理

０８５

０８６

０８７

０８８

０８９

０９０

０９１

０９２

０９３

０９４

 min.addEventListener('click', function () { // 分を押した時の処理

 if (isRunning === true) { // カウントダウン中に設定時間を変更できないようにする

 return;

 }

 timeToCountDown += 60 * 1000; // 分 = 60秒なので

 if (timeToCountDown >= 60 * 60 * 1000) { // 60 分、60秒を超えたら0にする

 timeToCountDown = 0;

 }

 updateTimer(timeToCountDown); // timeToCountDown を timer に 反 映 さ せ た い の で

upDatetimer を使う

 });

８５～９４行 分ボタンを押したときの処理

０９５

０９６

０９７

０９８

０９９

１００

１０１

１０２

１０３

１０４

 sec.addEventListener('click', function () { // 秒を押した時の処理

 if (isRunning === true) { // カウントダウン中に設定時間を変更できないようにする

 return;

 }

 timeToCountDown += 1000; // 1 秒なので

 if (timeToCountDown >= 60 * 60 * 1000) {

 timeToCountDown = 0;

 }

 updateTimer(timeToCountDown); // timeToCountDown を timer に 反 映 さ せ た い の で

upDatetimer を使う

 });

９５～１０４行 秒ボタンを押したときの処理

１０５

１０６

１０７

１０８

１０９

１１０

１１１

 reset.addEventListener('click', function () { // リセットを押した時の処理

 if (isRunning === true) { // カウントダウン中に設定時間を変更できないようにする

 return;

 }

 timeToCountDown = 0;

 updateTimer(timeToCountDown); // timeToCountDown を timer に 反 映 さ せた い ので

upDatetimer を使う

 });

１０５～１１１行 リセットボタンを押したときの処理

１５ プログラミング実践 ゲーム制作

 今まで学んだことを使ってゲームを作りなさい。必要であれば、図書館などで書籍を借りて作りなさい。

（例１） js15-１．自力で制作したシューティングゲーム

制限時間を決めて、制限時間までに何点取れるか競うゲーム

弾が敵に当たった時に、敵の画像が変わる。インターネットで情報収集をしながら、ほぼ自力で制作した。

（例２） js15-２．書籍を参考にして制作したシューティングゲーム

クラス、配列を使って、複数の敵が登場したり、複数の弾を発射したりできるようにしている。

図書館を回って、横浜市立図書館で『田中賢一郎 著 「ゲームで学ぶ JavaScript 入門」（インプレス）』のプ

ログラムを参考にして作成した。

