
プログラミング演習（JavaScript）④ 【実践２】 WebAPI 

ＷｅｂＡＰＩとはインターネット経由で使えるＡＰＩ（＝機能やデータの提供窓口）のことで、Ｗｅｂアプリ、モバ

イルアプリなどから呼び出せる共通のサービス窓口のことである。 

WebAPI を使うと、①サーバー側にリクエストをしなくても、直接データを取得して表示ができたり（例：

天気予報、ニュースなどをその場で表示）、②fetch()や XMLHttpRequest を使って、リロードせずに非

同期で API からデータを取ってこれたり（例：ＸのＴＬが自動で更新される）、③豊富な既存のデータベースが

利用できたり（例：地図表示のＧｏｏｇｌｅＭａｐｓＡＰＩ、天気情報のＯｐｅｎＷｅａｔｈｅｒＡＰＩ、ユーザーやリポジト

リ情報のＧｉｔＨｕｂなど）・・・、と、これらを利用できるようにすることは大きなメリットとなる。 

1６ 気象庁の天気予報データ（JSON形式）を取得して表示するプログラム 

  

ここでは、気象庁の天気データを使って、天気予報を表示させるプログラムを作る。 

ｊs16-1.htm  静岡県の今日と明日の天気情報を表示する 
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<!DOCTYPE HTML> 

<html> 

<head> 

    <meta charset = "utf-8"> 

<script> 

let url = "https://www.jma.go.jp/bosai/forecast/data/forecast/220000.json";  

fetch(url) 

    .then(function(response) { 

        return response.json(); 

    }) 

    .then(function(weather) { 

        console.log(weather);  

        let area = weather[0].timeSeries[0].areas[0]; 

        console.log(area);  

        document.getElementById("publishingOffice").lastElementChild.textContent = 

weather[0].publishingOffice; 

        document.getElementById("reportDatetime").lastElementChild.textContent = 

weather[0].reportDatetime;  

        document.getElementById("targetArea").lastElementChild.textContent = 

area.area.name; 

        document.getElementById("today").lastElementChild.textContent = 

area.weathers[0]; 

        document.getElementById("tomorrow").lastElementChild.textContent = 

area.weathers[1];  
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    });     

</script> 

</head> 

<body> 

    <h1>気象庁 JSON データを利用して<br> 

        静岡の天気を表示させる</h1>     

    <table> 

        <tr id="publishingOffice"> 

            <th>発表者</th><td></td> 

        </tr> 

        <tr id="reportDatetime"> 

            <th>報告日時</th><td></td> 

        </tr> 

        <tr id="targetArea"> 

            <th>対象地域</th><td></td> 

        </tr> 

        <tr id="today"> 

            <th>今日の天気</th><td></td> 

        </tr> 

        <tr id="tomorrow"> 

            <th>明日の天気</th><td></td> 

        </tr> 

    </table> 

</body> 

</html> 

 

【解説】 

６行 変数 url に静岡県の天気予報データを提供する気象庁の API の URL を入れる 

７行 fetch(url)は、指定された URL からデータを非同期で取得する 

９行 response.json()で、取得したデータを JSON 形式として処理する 

１１行 weather 変数に取得した JSON データが格納される。これで、この後の処理が可能になる。 

１２行 データ取得成功後、デバッグ用にコンソールに wether の中身を表示させる 

１３行 area に静岡エリアのデータを格納する。wether[0]が複数の予報の中から最初のデータ全体

(「今日・明日・明後日までの短期予報（1〜3日分）」)を指し、timeSeries は時間ごとの天気予報（ [0]

が天気（今日・明日・明後日など）、[1]が風・波、[2]が気温（最高・最低））、areas は地域ごとの天気

情報で、ここでは、両方とも０なので、今日の中部地区の天気情報を取得している。 

１５行 取得したデータの publishingOffice の値を HTML 上の id が publishingOffice の最後の子要素

（<td></td>の中）に入れる。 



１６、１７行 １５行と同様に指定した ID の最後の子要素にデータを入れる 

１８行 area.wethers[0]である今日の天気を today に入れて表示する 

１９行 area.wethers[1]である明日の天気を tomorrow に入れて表示する 

 ２７～４３行 表示する項目とデータの表 

         表１６ データの内容と ID 

項目名 ID 

発表者 publishingOffice 

報告日時 reportDatetime 

対象地域 targetArea 

今日の天気 today 

明日の天気 tomorrow 

 

【実行結果】 
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   <script> 

        const areaCodes = { 

            "東京": "130000", 

            "神奈川": "140000", 

            "静岡": "220000" 

        }; 

        function fetchWeather(areaCode) { 

            let url = `https://www.jma.go.jp/bosai/forecast/data/forecast/${areaCode}.json`; 

            fetch(url) 
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                .then(response => response.json()) 

                .then(weather => { 

                    let area = weather[0].timeSeries[0].areas[0]; 

                    document.getElementById("publishingOffice").lastElementChild.textContent 

= weather[0].publishingOffice; 

                    document.getElementById("reportDatetime").lastElementChild.textContent = 

weather[0].reportDatetime; 

                    document.getElementById("targetArea").lastElementChild.textContent = 

area.area.name; 

                    document.getElementById("today").lastElementChild.textContent = 

area.weathers[0]; 

                    document.getElementById("tomorrow").lastElementChild.textContent = 

area.weathers[1]; 

                    document.getElementById("dayAfterTomorrow").lastElementChild.textContent 

= area.weathers[2]; 

                }) 

                .catch(error => { 

                    alert("天気情報の取得に失敗しました: " + error); 

                }); 

        } 

        window.addEventListener("DOMContentLoaded", () => { 

            fetchWeather(areaCodes["東京"]); 

            document.getElementById("areaSelect").addEventListener("change", function() { 

                const selected = this.value; 

                fetchWeather(areaCodes[selected]); 

            }); 

        }); 

    </script> 

</head> 

<body> 

    <h1>気象庁の天気予報、３エリアから選択して表示</h1> 

    <label for="areaSelect">地域を選んでください：</label> 

    <select id="areaSelect"> 

        <option>東京</option> 

        <option>神奈川</option> 

        <option>静岡</option> 

    </select> 

    <table> 



        <tr id="publishingOffice"> 

            <th>発表者</th><td></td> 

        </tr> 

        <tr id="reportDatetime"> 

            <th>報告日時</th><td></td> 

        </tr> 

        <tr id="targetArea"> 

            <th>対象地域</th><td></td> 

        </tr> 

        <tr id="today"> 

            <th>今日の天気</th><td></td> 

        </tr> 

        <tr id="tomorrow"> 

            <th>明日の天気</th><td></td> 

        </tr> 

        <tr id="dayAfterTomorrow"> 

            <th>明後日の天気</th><td></td> 

        </tr> 

    </table> 

</body> 

</html> 

【解説】 

６～９行目 areaCodes オブジェクトを使って、地域名と気象庁のエリアコードを関連付ける 

１２行目 選択したエリアコードを url に入れて、指定した地域のデータを読み込む 

２９行目 最初に表示させておく文字を「東京」にする 

３９～４３行目 areaSelect で３つから選択できるようにする 

 【実行結果】 
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    <script> 

        const areaCodes = { 

            "東京": "130000", 

            "神奈川": "140000", 

            "静岡": "220000" 

        }; 

        let currentWeatherData = null; 

        function fetchWeather(prefCode) { 

            let url = `https://www.jma.go.jp/bosai/forecast/data/forecast/${prefCode}.json`; 

            fetch(url) 

                .then(response => response.json()) 

                .then(weather => { 

                    currentWeatherData = weather; 

                    const areas = weather[0].timeSeries[0].areas; 

                    const regionSelect = document.getElementById("regionSelect"); 

                    regionSelect.innerHTML = ""; 

                    areas.forEach((area, index) => { 

                        const opt = document.createElement("option"); 

                        opt.value = index; 

                        opt.textContent = area.area.name; 

                        regionSelect.appendChild(opt); 

                    }); 

                    showWeather(0); 

                }) 

                .catch(err => { 

                    alert("データ取得に失敗しました: " + err); 

                }); 

        } 

        function showWeather(areaIndex) { 

            if (!currentWeatherData) return; 

            const area = currentWeatherData[0].timeSeries[0].areas[areaIndex]; 

            document.getElementById("publishingOffice").lastElementChild.textContent = 

currentWeatherData[0].publishingOffice; 

            document.getElementById("reportDatetime").lastElementChild.textContent = 

currentWeatherData[0].reportDatetime; 

            document.getElementById("targetArea").lastElementChild.textContent = 

area.area.name; 
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            document.getElementById("today").lastElementChild.textContent = area.weathers[0]; 

            document.getElementById("tomorrow").lastElementChild.textContent = 

area.weathers[1]; 

            document.getElementById("dayAfterTomorrow").lastElementChild.textContent = 

area.weathers[2]; 

        } 

        window.addEventListener("DOMContentLoaded", () => { 

            const prefSelect = document.getElementById("prefSelect"); 

            const regionSelect = document.getElementById("regionSelect"); 

            fetchWeather(areaCodes["東京"]); 

            prefSelect.addEventListener("change", function () { 

                fetchWeather(areaCodes[this.value]); 

            });  

            regionSelect.addEventListener("change", function () { 

                showWeather(this.value); 

            }); 

        }); 

    </script> 

</head> 

<body> 

    <h1>天気予報 対象地域の変更</h1> 

    <label for="prefSelect">都道府県：</label> 

    <select id="prefSelect"> 

        <option>東京</option> 

        <option>神奈川</option> 

        <option>静岡</option> 

    </select> 

    <label for="regionSelect">対象地域：</label> 

    <select id="regionSelect"></select> 

 

【実行結果】 

１２行目 fetchWether（）で指定したエリアのデータを格納する 

３３行目 showWether()で指定した地域のデータを表示する 

４６行目 東京を初期表示にする 

４７行目 都道府県変更時の処理 

５０行目 地域変更時の処理 

  



【実行結果】 

  

  

  

 

１７ 地図情報を取得して表示する 

 

地図情報の API は Google Maps API が有名だが、ここでは完全フリーで API キーがいらない API を

使用して、ルート検索をする。地図の表示は、Leaflet.js のライブラリを使い、API から取得した情報を使っ

て表示させる。 
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<!DOCTYPE html> 

<html lang="ja"> 

<head> 

  <meta charset="UTF-8"> 

  <title>駿府城公園 東御門</title> 

  <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

  <!-- Leaflet CSS --> 

  <link rel="stylesheet" href="https://unpkg.com/leaflet@1.9.4/dist/leaflet.css" /> 

  <style> 
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    #map { 

      height: 600px; 

      width: 100%; 

    } 

  </style> 

</head> 

<body> 

  <h2>駿府城公園 東御門の地図</h2> 

  <div id="map"></div> 

  <!-- Leaflet JS --> 

  <script src="https://unpkg.com/leaflet@1.9.4/dist/leaflet.js"></script> 

  <script> 

    // 東御門の座標 

    const eastGate = [34.977715, 138.384739]; 

    // 地図の初期化 

    const map = L.map('map').setView(eastGate, 15); 

    // OpenStreetMap タイルレイヤーの追加 

    L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', { 

      attribution: '© OpenStreetMap contributors' 

    }).addTo(map); 

    // 東御門にマーカーを追加 

    L.marker(eastGate).addTo(map).bindPopup("駿府城公園 東御門"); 

  </script> 

</body> 

</html> 

【解説】 

６行 name="viewport" は、「ビューポート」という、ブラウザがページを表示するための見える範囲の

設定を指定する、という意味  

content="width=device-width" は、画面の幅（device-width）に合わせて表示を調整するという

設定で、スマホならスマホの幅、タブレットならタブレットの幅に合わせて、ページのレイアウトが調整される 

initial-scale=1.0 は、最初のズーム倍率を「1 倍」に設定するという意味で、ページが読み込まれたとき

に、ズームせずにそのままの倍率で表示される。 

よって、モバイル端末でも読みやすく表示され、ユーザーが最初に見たとき、変な拡大・縮小が起きないとい

う意味になる。これがないとページがすごく縮小されて読みにくくなることがあり、今ではモバイル対応には

必須のタグになっている。 

８行 Leaflet（リーフレット）という地図ライブラリの CSS（スタイル）ファイルを読み込むためのタグ。これ

がないと、マーカーの見た目が崩れたり、拡大ボタンが焼死されなくなったり、地図の枠やレイアウトがおか

しくなったり、不具合が生じる 



１０～１３行 <div id="map"></div>の部分を高さ 600px、幅１００％にしている。なので、親要素のブ

ラウザの幅に合わせて、地図が画面いっぱいに横に広がるようになる。 

２０行 Leaflet（リーフレット）という地図表示ライブラリの JavaScript ファイルを読み込む。これがない

と、L.map() や L.marker() など、Leaflet 特有の関数が使えなくなる。 

２３行 東御門の緯度と経度 

２５行 map という変数を作り、「作成した地図オブジェクト」を入れておくことで、あとで地図にマーカーを

追加したり、動かしたりできるようにしている。L.map('map')の L は Leaflet ライブラリのメインオブジ

ェクト。map() は「地図を作る」という関数。'map' は HTML の中にある <div id="map"></div> 

の「id」を指定している。つまり：「id が'map'の場所に地図を作る」という意味になる。 

.setView(eastGate, 15) 

地図の「中心の座標」と「ズームレベル」を設定している。eastGate は [34.977715, 138.384739] 

という 駿府城公園 東御門の緯度・経度で、15 は ズームレベル（数字が大きいほどズームイン）。 

まとめると、「 id="map" の場所に、中心を「東御門」に設定し、ズームレベル 15 で地図を表示する 」と

いう意味になる。 

２７行 L.tileLayer(...)の tileLayer は 地図のタイル画像（地図の背景）を設定する関数で、地図は「タイ

ル」と呼ばれる小さな画像をたくさん並べて表示されている。 

'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png' は OpenStreetMap（OSM） の地図

画像を読み込むための URL パターン。 

それぞれの意味 

{s}：サブドメイン（a, b, c など）。読み込みを分散するために使われる。 

{z}：ズームレベル（0〜20 くらい） 

{x} & {y}：表示したい地図の位置（タイルの座標） 

２８行 attribution: '© OpenStreetMap contributors' は地図の著作権表示（クレジット）で、

OpenStreetMap の地図を使うときは、この表示が必須。 

２９行 .addTo(map) は、「このタイルレイヤーを、先ほど作った地図オブジェクト（map）に追加する」と

いう意味で、これがないと、背景地図は表示されない。 

という意味になる。この URL のテンプレートを使うことで、Leaflet が自動で必要な画像を読み込んで、地

図を表示する。 

３１行 東御門の位置にピン（マーカー）を立てて、ピンをクリックすると「駿府城公園 東御門」と表示する吹

き出しを追加する 

【実行結果】 



 

 

次に、マウスポインタで座標を取得させるプログラムを作る 

ｊs17-2.htm  地図の上でマウスポインタの座標を表示させ、クリックしたらコピーする 

００１ 

００２ 

００３ 

００４ 

００５ 

００６ 

００７ 

００８ 

００９ 

０１０ 

０１１ 

０１２ 

０１３ 

０１４ 

０１５ 

<!DOCTYPE html> 

<html lang="ja"> 

<head> 

  <meta charset="UTF-8"> 

  <title>駿府城公園 東御門＋右上に座標、クリックしてコピー</title> 

  <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

  <!-- Leaflet CSS --> 

  <link rel="stylesheet" href="https://unpkg.com/leaflet@1.9.4/dist/leaflet.css" /> 

  <style> 

    #map { 

      height: 600px; 

      width: 100%; 

    } 

    #coords-display { 

      position: absolute; 
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      top: 10px; 

      right: 10px; 

      background-color: rgba(255,255,255,0.9); 

      padding: 6px 12px; 

      border: 1px solid #ccc; 

      border-radius: 6px; 

      font-family: monospace; 

      font-size: 14px; 

      z-index: 1000; 

      box-shadow: 0 0 5px rgba(0,0,0,0.2); 

    } 

  </style> 

</head> 

<body> 

  <h2>駿駿府城公園 東御門＋右上に座標、クリックしてコピー</h2> 

  <div id="coords-display">座標: --</div> 

  <div id="map"></div> 

  <!-- Leaflet JS --> 

  <script src="https://unpkg.com/leaflet@1.9.4/dist/leaflet.js"></script> 

  <script> 

    const eastGate = [34.977715, 138.384739]; 

    const map = L.map('map').setView(eastGate, 15); 

    // OSM レイヤー 

    L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', { 

      attribution: '© OpenStreetMap contributors' 

    }).addTo(map); 

    // 東御門マーカー 

    L.marker(eastGate).addTo(map).bindPopup("駿府城公園 東御門"); 

    // 座標表示用ラベル 

    const coordsDisplay = document.getElementById('coords-display'); 

    // マウス移動時に座標表示 

    map.on('mousemove', function(e) { 

      const lat = e.latlng.lat.toFixed(6); 

      const lng = e.latlng.lng.toFixed(6); 

      coordsDisplay.textContent = `座標: ${lat}, ${lng}`; 

    }); 

    // クリック時に座標をクリップボードにコピー 

    map.on('click', function(e) { 
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      const lat = e.latlng.lat.toFixed(6); 

      const lng = e.latlng.lng.toFixed(6); 

      const coordsText = `${lat}, ${lng}`; 

      navigator.clipboard.writeText(coordsText) 

        .then(() => { 

          coordsDisplay.textContent = `コピーしました: ${coordsText}`; 

        }) 

        .catch(err => { 

          coordsDisplay.textContent = `コピー失敗: ${err}`; 

        }); 

    }); 

  </script> 

</body> 

</html> 

 

【実行結果】 

 

 

次に、地図にルート検索の機能を追加する。 

ｊs17-３.htm  クリックした場所から、東御門までのルートを検索して表示させる。 
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<!DOCTYPE html> 

<html lang="ja"> 

<head> 

  <meta charset="UTF-8"> 

  <title>駿府城公園 東御門ルート表示</title> 

  <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

  <!-- Leaflet CSS --> 

  <link rel="stylesheet" href="https://unpkg.com/leaflet@1.9.4/dist/leaflet.css" /> 

  <style> 

    #map { 

      height: 600px; 

      width: 100%; 

    } 

    #coords-display { 

      position: absolute; 

      top: 10px; 

      right: 10px; 

      background-color: rgba(255,255,255,0.95); 

      padding: 6px 12px; 

      border: 1px solid #ccc; 

      border-radius: 6px; 

      font-family: monospace; 

      font-size: 14px; 

      z-index: 1000; 

      box-shadow: 0 0 5px rgba(0,0,0,0.2); 

    } 

  </style> 

</head> 

<body> 

  <h2>駿府城公園 東御門までの徒歩ルート表示</h2> 

  <div id="coords-display">座標: --</div> 

  <div id="map"></div> 

  <!-- Leaflet JS --> 

  <script src="https://unpkg.com/leaflet@1.9.4/dist/leaflet.js"></script> 

  <script> 

    const eastGate = [34.977715, 138.384739]; // 駿府城公園 東御門 

    const map = L.map('map').setView(eastGate, 15); 

    // タイルレイヤー追加 
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    L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', { 

      attribution: '© OpenStreetMap contributors' 

    }).addTo(map); 

    // 東御門マーカー 

    const goalMarker = L.marker(eastGate).addTo(map).bindPopup(" 駿府城公園 東御門

").openPopup(); 

    // 座標表示用 

    const coordsDisplay = document.getElementById('coords-display'); 

    let routeLayer = null; 

    let startMarker = null; 

    // マウス移動時の座標表示 

    map.on('mousemove', function(e) { 

      const lat = e.latlng.lat.toFixed(6); 

      const lng = e.latlng.lng.toFixed(6); 

      coordsDisplay.textContent = `座標: ${lat}, ${lng}`; 

    }); 

    // 地図クリック時の処理 

    map.on('click', function(e) { 

      const lat = e.latlng.lat.toFixed(6); 

      const lng = e.latlng.lng.toFixed(6); 

      const coordsText = `${lat}, ${lng}`; 

      // クリップボードにコピー 

      navigator.clipboard.writeText(coordsText) 

        .then(() => { 

          coordsDisplay.textContent = `コピーしました: ${coordsText}`; 

        }) 

        .catch(err => { 

          coordsDisplay.textContent = `コピー失敗: ${err}`; 

        }); 

      // 既存マーカー・ルートを削除 

      if (startMarker) map.removeLayer(startMarker); 

      if (routeLayer) map.removeLayer(routeLayer); 

      // 出発マーカー 

      startMarker = L.marker([lat, lng]).addTo(map).bindPopup("出発地点").openPopup(); 

      // OSRM ルート API で徒歩ルート取得 

      const osrmUrl = `https://router.project-osrm.org/route/v1/foot/${lng},${lat};${eastGate[1]}, 

${eastGate[0]}?overview=full&geometries=geojson`; 

      fetch(osrmUrl) 
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        .then(res => res.json()) 

        .then(data => { 

          const coords = data.routes[0].geometry.coordinates; 

          const latlngs = coords.map(c => [c[1], c[0]]); 

          // ルート表示 

          routeLayer = L.polyline(latlngs, { 

            color: 'green', 

            weight: 5, 

            opacity: 0.8 

          }).addTo(map).bindPopup("徒歩ルート"); 

        }) 

        .catch(err => { 

          alert("ルート取得に失敗しました。"); 

          console.error(err); 

        }); 

    }); 

  </script> 

</body> 

</html> 

 

【実行結果】 



 

 

最後に、出発地点と目的地を自分で決めて、ルート検索できるようにする。右クリックするとリセットする機

能も付ける。 

17-４.htm  クリックした場所から、東御門までのルートを検索して表示させる。 
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<!DOCTYPE html> 

<html lang="ja"> 

<head> 

  <meta charset="UTF-8"> 

  <title>クリックでルート表示（START / GOAL 文字のみ）</title> 

  <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

  <link rel="stylesheet" href="https://unpkg.com/leaflet@1.9.4/dist/leaflet.css" /> 

  <style> 

    #map { 

      height: 600px; 

      width: 100%; 

    } 

    #coords-display { 
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      position: absolute; 

      top: 10px; 

      right: 10px; 

      background-color: rgba(255,255,255,0.95); 

      padding: 6px 12px; 

      border: 1px solid #ccc; 

      border-radius: 6px; 

      font-family: monospace; 

      font-size: 14px; 

      z-index: 1000; 

      box-shadow: 0 0 5px rgba(0,0,0,0.2); 

    } 

    .label-text { 

      font-weight: bold; 

      font-size: 16px; 

      white-space: nowrap; 

      color: black; 

      background: none; 

      border: none; 

      padding: 0; 

      box-shadow: none; 

    } 

  </style> 

</head> 

<body> 

  <h2>クリックで徒歩ルートを表示（START / GOAL 文字のみ）</h2> 

  <div id="coords-display">座標: --</div> 

  <div id="map"></div> 

  <script src="https://unpkg.com/leaflet@1.9.4/dist/leaflet.js"></script> 

  <script> 

    const map = L.map('map').setView([34.977715, 138.384739], 15); // 駿府城公園周辺 

    L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', { 

      attribution: '© OpenStreetMap contributors' 

    }).addTo(map); 

    const coordsDisplay = document.getElementById('coords-display'); 

    let startCoord = null; 

    let endCoord = null; 

    let routeLine = null; 
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    let startMarker = null; 

    let endMarker = null; 

    let startLabel = null; 

    let endLabel = null; 

    // 座標表示 

    map.on('mousemove', function(e) { 

      coordsDisplay.textContent = ` 座 標 : ${e.latlng.lat.toFixed(6)}, 

${e.latlng.lng.toFixed(6)}`; 

    }); 

    // ラベル生成用関数（文字のみ） 

    function createLabel(latlng, text) { 

      return L.marker(latlng, { 

        icon: L.divIcon({ 

          className: 'label-text', 

          html: text, 

          iconAnchor: [-10, -10], // マーカーの上・左寄りに表示 

        }), 

        interactive: false 

      }).addTo(map); 

    } 

    // ピンマーカー 

    function createPinMarker(latlng) { 

      return L.marker(latlng).addTo(map); 

    } 

    // 左クリック → START と GOAL を設定 

    map.on('click', function(e) { 

      const latlng = e.latlng; 

      if (!startCoord) { 

        startCoord = latlng; 

        startMarker = createPinMarker(latlng); 

        startLabel = createLabel(latlng, 'START'); 

        coordsDisplay.textContent = ` 出 発 地 点 ： ${latlng.lat.toFixed(6)}, 

${latlng.lng.toFixed(6)}`; 

      } else if (!endCoord) { 

        endCoord = latlng; 

        endMarker = createPinMarker(latlng); 

        endLabel = createLabel(latlng, 'GOAL'); 

        coordsDisplay.textContent = ` 目 的 地 ： ${latlng.lat.toFixed(6)}, 
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${latlng.lng.toFixed(6)}`; 

        const url = `https://router.project-

osrm.org/route/v1/foot/${startCoord.lng},${startCoord.lat};${endCoord.lng},${endCoor

d.lat}?overview=full&geometries=geojson`; 

        fetch(url) 

          .then(res => res.json()) 

          .then(data => { 

            const coords = data.routes[0].geometry.coordinates; 

            const latlngs = coords.map(c => [c[1], c[0]]); 

            routeLine = L.polyline(latlngs, { 

              color: 'blue', 

              weight: 5, 

              opacity: 0.8 

            }).addTo(map).bindPopup("徒歩ルート"); 

          }) 

          .catch(err => { 

            alert("ルートの取得に失敗しました。"); 

            console.error(err); 

          }); 

      } 

    }); 

    // 右クリック → リセット 

    map.on('contextmenu', function(e) { 

      startCoord = null; 

      endCoord = null; 

      if (routeLine) { 

        map.removeLayer(routeLine); 

        routeLine = null; 

      } 

      [startMarker, endMarker, startLabel, endLabel].forEach(m => { 

        if (m) map.removeLayer(m); 

      }); 

      startMarker = null; 

      endMarker = null; 

      startLabel = null; 

      endLabel = null; 

      coordsDisplay.textContent = "リセットしました。座標: --"; 

    }); 
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  </script> 

</body> 

</html> 

 

【実行結果】 

 


