
プログラミング演習（JavaScript）④ 【実践２】 WebAPI

ＷｅｂＡＰＩとはインターネット経由で使えるＡＰＩ（＝機能やデータの提供窓口）のことで、Ｗｅｂアプリ、モバ

イルアプリなどから呼び出せる共通のサービス窓口のことである。

WebAPI を使うと、①サーバー側にリクエストをしなくても、直接データを取得して表示ができたり（例：

天気予報、ニュースなどをその場で表示）、②fetch()や XMLHttpRequest を使って、リロードせずに非

同期で API からデータを取ってこれたり（例：ＸのＴＬが自動で更新される）、③豊富な既存のデータベースが

利用できたり（例：地図表示のＧｏｏｇｌｅＭａｐｓＡＰＩ、天気情報のＯｐｅｎＷｅａｔｈｅｒＡＰＩ、ユーザーやリポジト

リ情報のＧｉｔＨｕｂなど）・・・、と、これらを利用できるようにすることは大きなメリットとなる。

1６ 気象庁の天気予報データ（JSON形式）を取得して表示するプログラム

ここでは、気象庁の天気データを使って、天気予報を表示させるプログラムを作る。

ｊs16-1.htm 静岡県の今日と明日の天気情報を表示する

００１

００２

００３

００４

００５

００６

００７

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

０１９

０２０

<!DOCTYPE HTML>

<html>

<head>

 <meta charset = "utf-8">

<script>

let url = "https://www.jma.go.jp/bosai/forecast/data/forecast/220000.json";

fetch(url)

 .then(function(response) {

 return response.json();

 })

 .then(function(weather) {

 console.log(weather);

 let area = weather[0].timeSeries[0].areas[0];

 console.log(area);

 document.getElementById("publishingOffice").lastElementChild.textContent =

weather[0].publishingOffice;

 document.getElementById("reportDatetime").lastElementChild.textContent =

weather[0].reportDatetime;

 document.getElementById("targetArea").lastElementChild.textContent =

area.area.name;

 document.getElementById("today").lastElementChild.textContent =

area.weathers[0];

 document.getElementById("tomorrow").lastElementChild.textContent =

area.weathers[1];

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

０３８

０３９

０４０

０４１

０４２

０４３

０４４

045

 });

</script>

</head>

<body>

 <h1>気象庁 JSON データを利用して

 静岡の天気を表示させる</h1>

 <table>

 <tr id="publishingOffice">

 <th>発表者</th><td></td>

 </tr>

 <tr id="reportDatetime">

 <th>報告日時</th><td></td>

 </tr>

 <tr id="targetArea">

 <th>対象地域</th><td></td>

 </tr>

 <tr id="today">

 <th>今日の天気</th><td></td>

 </tr>

 <tr id="tomorrow">

 <th>明日の天気</th><td></td>

 </tr>

 </table>

</body>

</html>

【解説】

６行 変数 url に静岡県の天気予報データを提供する気象庁の API の URL を入れる

７行 fetch(url)は、指定された URL からデータを非同期で取得する

９行 response.json()で、取得したデータを JSON 形式として処理する

１１行 weather 変数に取得した JSON データが格納される。これで、この後の処理が可能になる。

１２行 データ取得成功後、デバッグ用にコンソールに wether の中身を表示させる

１３行 area に静岡エリアのデータを格納する。wether[0]が複数の予報の中から最初のデータ全体

(「今日・明日・明後日までの短期予報（1〜3日分）」)を指し、timeSeries は時間ごとの天気予報（ [0]

が天気（今日・明日・明後日など）、[1]が風・波、[2]が気温（最高・最低））、areas は地域ごとの天気

情報で、ここでは、両方とも０なので、今日の中部地区の天気情報を取得している。

１５行 取得したデータの publishingOffice の値を HTML 上の id が publishingOffice の最後の子要素

（<td></td>の中）に入れる。

１６、１７行 １５行と同様に指定した ID の最後の子要素にデータを入れる

１８行 area.wethers[0]である今日の天気を today に入れて表示する

１９行 area.wethers[1]である明日の天気を tomorrow に入れて表示する

 ２７～４３行 表示する項目とデータの表

 表１６ データの内容と ID

項目名 ID

発表者 publishingOffice

報告日時 reportDatetime

対象地域 targetArea

今日の天気 today

明日の天気 tomorrow

【実行結果】

ｊs16-２.htm 東京都と神奈川県と静岡県の今日と明日と明後日の天気情報を表示する

００５

００６

００７

００８

００９

０１０

０１１

０１２

０１３

 <script>

 const areaCodes = {

 "東京": "130000",

 "神奈川": "140000",

 "静岡": "220000"

 };

 function fetchWeather(areaCode) {

 let url = `https://www.jma.go.jp/bosai/forecast/data/forecast/${areaCode}.json`;

 fetch(url)

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

０３８

０３９

０４０

０４１

０４２

０４３

０４４

045

 .then(response => response.json())

 .then(weather => {

 let area = weather[0].timeSeries[0].areas[0];

 document.getElementById("publishingOffice").lastElementChild.textContent

= weather[0].publishingOffice;

 document.getElementById("reportDatetime").lastElementChild.textContent =

weather[0].reportDatetime;

 document.getElementById("targetArea").lastElementChild.textContent =

area.area.name;

 document.getElementById("today").lastElementChild.textContent =

area.weathers[0];

 document.getElementById("tomorrow").lastElementChild.textContent =

area.weathers[1];

 document.getElementById("dayAfterTomorrow").lastElementChild.textContent

= area.weathers[2];

 })

 .catch(error => {

 alert("天気情報の取得に失敗しました: " + error);

 });

 }

 window.addEventListener("DOMContentLoaded", () => {

 fetchWeather(areaCodes["東京"]);

 document.getElementById("areaSelect").addEventListener("change", function() {

 const selected = this.value;

 fetchWeather(areaCodes[selected]);

 });

 });

 </script>

</head>

<body>

 <h1>気象庁の天気予報、３エリアから選択して表示</h1>

 <label for="areaSelect">地域を選んでください：</label>

 <select id="areaSelect">

 <option>東京</option>

 <option>神奈川</option>

 <option>静岡</option>

 </select>

 <table>

 <tr id="publishingOffice">

 <th>発表者</th><td></td>

 </tr>

 <tr id="reportDatetime">

 <th>報告日時</th><td></td>

 </tr>

 <tr id="targetArea">

 <th>対象地域</th><td></td>

 </tr>

 <tr id="today">

 <th>今日の天気</th><td></td>

 </tr>

 <tr id="tomorrow">

 <th>明日の天気</th><td></td>

 </tr>

 <tr id="dayAfterTomorrow">

 <th>明後日の天気</th><td></td>

 </tr>

 </table>

</body>

</html>

【解説】

６～９行目 areaCodes オブジェクトを使って、地域名と気象庁のエリアコードを関連付ける

１２行目 選択したエリアコードを url に入れて、指定した地域のデータを読み込む

２９行目 最初に表示させておく文字を「東京」にする

３９～４３行目 areaSelect で３つから選択できるようにする

 【実行結果】

ｊs16-３.htm 各エリアの対象地域を変更できるようにする

００５

００６

００７

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

０３８

 <script>

 const areaCodes = {

 "東京": "130000",

 "神奈川": "140000",

 "静岡": "220000"

 };

 let currentWeatherData = null;

 function fetchWeather(prefCode) {

 let url = `https://www.jma.go.jp/bosai/forecast/data/forecast/${prefCode}.json`;

 fetch(url)

 .then(response => response.json())

 .then(weather => {

 currentWeatherData = weather;

 const areas = weather[0].timeSeries[0].areas;

 const regionSelect = document.getElementById("regionSelect");

 regionSelect.innerHTML = "";

 areas.forEach((area, index) => {

 const opt = document.createElement("option");

 opt.value = index;

 opt.textContent = area.area.name;

 regionSelect.appendChild(opt);

 });

 showWeather(0);

 })

 .catch(err => {

 alert("データ取得に失敗しました: " + err);

 });

 }

 function showWeather(areaIndex) {

 if (!currentWeatherData) return;

 const area = currentWeatherData[0].timeSeries[0].areas[areaIndex];

 document.getElementById("publishingOffice").lastElementChild.textContent =

currentWeatherData[0].publishingOffice;

 document.getElementById("reportDatetime").lastElementChild.textContent =

currentWeatherData[0].reportDatetime;

 document.getElementById("targetArea").lastElementChild.textContent =

area.area.name;

０３９

０４０

０４１

０４２

０４３

０４４

045

０４６

０４７

０４８

０４９

０５０

０５１

０５２

０５３

０５４

0５５

０５６

０５７

０３８

０３９

０４０

０４１

０４２

０４３

０４４

04５

 document.getElementById("today").lastElementChild.textContent = area.weathers[0];

 document.getElementById("tomorrow").lastElementChild.textContent =

area.weathers[1];

 document.getElementById("dayAfterTomorrow").lastElementChild.textContent =

area.weathers[2];

 }

 window.addEventListener("DOMContentLoaded", () => {

 const prefSelect = document.getElementById("prefSelect");

 const regionSelect = document.getElementById("regionSelect");

 fetchWeather(areaCodes["東京"]);

 prefSelect.addEventListener("change", function () {

 fetchWeather(areaCodes[this.value]);

 });

 regionSelect.addEventListener("change", function () {

 showWeather(this.value);

 });

 });

 </script>

</head>

<body>

 <h1>天気予報 対象地域の変更</h1>

 <label for="prefSelect">都道府県：</label>

 <select id="prefSelect">

 <option>東京</option>

 <option>神奈川</option>

 <option>静岡</option>

 </select>

 <label for="regionSelect">対象地域：</label>

 <select id="regionSelect"></select>

【実行結果】

１２行目 fetchWether（）で指定したエリアのデータを格納する

３３行目 showWether()で指定した地域のデータを表示する

４６行目 東京を初期表示にする

４７行目 都道府県変更時の処理

５０行目 地域変更時の処理

【実行結果】

１７ 地図情報を取得して表示する

地図情報の API は Google Maps API が有名だが、ここでは完全フリーで API キーがいらない API を

使用して、ルート検索をする。地図の表示は、Leaflet.js のライブラリを使い、API から取得した情報を使っ

て表示させる。

ｊs17-1.htm 指定した場所の地図を表示させる

００１

００２

００３

００４

００５

００６

００７

００８

００９

<!DOCTYPE html>

<html lang="ja">

<head>

 <meta charset="UTF-8">

 <title>駿府城公園 東御門</title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- Leaflet CSS -->

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.9.4/dist/leaflet.css" />

 <style>

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

 #map {

 height: 600px;

 width: 100%;

 }

 </style>

</head>

<body>

 <h2>駿府城公園 東御門の地図</h2>

 <div id="map"></div>

 <!-- Leaflet JS -->

 <script src="https://unpkg.com/leaflet@1.9.4/dist/leaflet.js"></script>

 <script>

 // 東御門の座標

 const eastGate = [34.977715, 138.384739];

 // 地図の初期化

 const map = L.map('map').setView(eastGate, 15);

 // OpenStreetMap タイルレイヤーの追加

 L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

 attribution: '© OpenStreetMap contributors'

 }).addTo(map);

 // 東御門にマーカーを追加

 L.marker(eastGate).addTo(map).bindPopup("駿府城公園 東御門");

 </script>

</body>

</html>

【解説】

６行 name="viewport" は、「ビューポート」という、ブラウザがページを表示するための見える範囲の

設定を指定する、という意味

content="width=device-width" は、画面の幅（device-width）に合わせて表示を調整するという

設定で、スマホならスマホの幅、タブレットならタブレットの幅に合わせて、ページのレイアウトが調整される

initial-scale=1.0 は、最初のズーム倍率を「1 倍」に設定するという意味で、ページが読み込まれたとき

に、ズームせずにそのままの倍率で表示される。

よって、モバイル端末でも読みやすく表示され、ユーザーが最初に見たとき、変な拡大・縮小が起きないとい

う意味になる。これがないとページがすごく縮小されて読みにくくなることがあり、今ではモバイル対応には

必須のタグになっている。

８行 Leaflet（リーフレット）という地図ライブラリの CSS（スタイル）ファイルを読み込むためのタグ。これ

がないと、マーカーの見た目が崩れたり、拡大ボタンが焼死されなくなったり、地図の枠やレイアウトがおか

しくなったり、不具合が生じる

１０～１３行 <div id="map"></div>の部分を高さ 600px、幅１００％にしている。なので、親要素のブ

ラウザの幅に合わせて、地図が画面いっぱいに横に広がるようになる。

２０行 Leaflet（リーフレット）という地図表示ライブラリの JavaScript ファイルを読み込む。これがない

と、L.map() や L.marker() など、Leaflet 特有の関数が使えなくなる。

２３行 東御門の緯度と経度

２５行 map という変数を作り、「作成した地図オブジェクト」を入れておくことで、あとで地図にマーカーを

追加したり、動かしたりできるようにしている。L.map('map')の L は Leaflet ライブラリのメインオブジ

ェクト。map() は「地図を作る」という関数。'map' は HTML の中にある <div id="map"></div>

の「id」を指定している。つまり：「id が'map'の場所に地図を作る」という意味になる。

.setView(eastGate, 15)

地図の「中心の座標」と「ズームレベル」を設定している。eastGate は [34.977715, 138.384739]

という 駿府城公園 東御門の緯度・経度で、15 は ズームレベル（数字が大きいほどズームイン）。

まとめると、「 id="map" の場所に、中心を「東御門」に設定し、ズームレベル 15 で地図を表示する 」と

いう意味になる。

２７行 L.tileLayer(...)の tileLayer は 地図のタイル画像（地図の背景）を設定する関数で、地図は「タイ

ル」と呼ばれる小さな画像をたくさん並べて表示されている。

'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png' は OpenStreetMap（OSM） の地図

画像を読み込むための URL パターン。

それぞれの意味

{s}：サブドメイン（a, b, c など）。読み込みを分散するために使われる。

{z}：ズームレベル（0〜20 くらい）

{x} & {y}：表示したい地図の位置（タイルの座標）

２８行 attribution: '© OpenStreetMap contributors' は地図の著作権表示（クレジット）で、

OpenStreetMap の地図を使うときは、この表示が必須。

２９行 .addTo(map) は、「このタイルレイヤーを、先ほど作った地図オブジェクト（map）に追加する」と

いう意味で、これがないと、背景地図は表示されない。

という意味になる。この URL のテンプレートを使うことで、Leaflet が自動で必要な画像を読み込んで、地

図を表示する。

３１行 東御門の位置にピン（マーカー）を立てて、ピンをクリックすると「駿府城公園 東御門」と表示する吹

き出しを追加する

【実行結果】

次に、マウスポインタで座標を取得させるプログラムを作る

ｊs17-2.htm 地図の上でマウスポインタの座標を表示させ、クリックしたらコピーする

００１

００２

００３

００４

００５

００６

００７

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

<!DOCTYPE html>

<html lang="ja">

<head>

 <meta charset="UTF-8">

 <title>駿府城公園 東御門＋右上に座標、クリックしてコピー</title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- Leaflet CSS -->

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.9.4/dist/leaflet.css" />

 <style>

 #map {

 height: 600px;

 width: 100%;

 }

 #coords-display {

 position: absolute;

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

０３８

０３９

０４０

０４１

０４２

０４３

０４４

０４５

０４６

０４７

０４８

０４９

０５０

０５１

０５２

０５３

 top: 10px;

 right: 10px;

 background-color: rgba(255,255,255,0.9);

 padding: 6px 12px;

 border: 1px solid #ccc;

 border-radius: 6px;

 font-family: monospace;

 font-size: 14px;

 z-index: 1000;

 box-shadow: 0 0 5px rgba(0,0,0,0.2);

 }

 </style>

</head>

<body>

 <h2>駿駿府城公園 東御門＋右上に座標、クリックしてコピー</h2>

 <div id="coords-display">座標: --</div>

 <div id="map"></div>

 <!-- Leaflet JS -->

 <script src="https://unpkg.com/leaflet@1.9.4/dist/leaflet.js"></script>

 <script>

 const eastGate = [34.977715, 138.384739];

 const map = L.map('map').setView(eastGate, 15);

 // OSM レイヤー

 L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

 attribution: '© OpenStreetMap contributors'

 }).addTo(map);

 // 東御門マーカー

 L.marker(eastGate).addTo(map).bindPopup("駿府城公園 東御門");

 // 座標表示用ラベル

 const coordsDisplay = document.getElementById('coords-display');

 // マウス移動時に座標表示

 map.on('mousemove', function(e) {

 const lat = e.latlng.lat.toFixed(6);

 const lng = e.latlng.lng.toFixed(6);

 coordsDisplay.textContent = `座標: ${lat}, ${lng}`;

 });

 // クリック時に座標をクリップボードにコピー

 map.on('click', function(e) {

０５４

０５５

０５６

０５７

０５８

０５９

０６０

０６１

０６２

０６３

０６４

０６５

０６６

０６７

 const lat = e.latlng.lat.toFixed(6);

 const lng = e.latlng.lng.toFixed(6);

 const coordsText = `${lat}, ${lng}`;

 navigator.clipboard.writeText(coordsText)

 .then(() => {

 coordsDisplay.textContent = `コピーしました: ${coordsText}`;

 })

 .catch(err => {

 coordsDisplay.textContent = `コピー失敗: ${err}`;

 });

 });

 </script>

</body>

</html>

【実行結果】

次に、地図にルート検索の機能を追加する。

ｊs17-３.htm クリックした場所から、東御門までのルートを検索して表示させる。

００１

００２

００３

００４

００５

００６

００７

００８

００９

０１０

０１１

０１２

０１３

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

０３８

<!DOCTYPE html>

<html lang="ja">

<head>

 <meta charset="UTF-8">

 <title>駿府城公園 東御門ルート表示</title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- Leaflet CSS -->

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.9.4/dist/leaflet.css" />

 <style>

 #map {

 height: 600px;

 width: 100%;

 }

 #coords-display {

 position: absolute;

 top: 10px;

 right: 10px;

 background-color: rgba(255,255,255,0.95);

 padding: 6px 12px;

 border: 1px solid #ccc;

 border-radius: 6px;

 font-family: monospace;

 font-size: 14px;

 z-index: 1000;

 box-shadow: 0 0 5px rgba(0,0,0,0.2);

 }

 </style>

</head>

<body>

 <h2>駿府城公園 東御門までの徒歩ルート表示</h2>

 <div id="coords-display">座標: --</div>

 <div id="map"></div>

 <!-- Leaflet JS -->

 <script src="https://unpkg.com/leaflet@1.9.4/dist/leaflet.js"></script>

 <script>

 const eastGate = [34.977715, 138.384739]; // 駿府城公園 東御門

 const map = L.map('map').setView(eastGate, 15);

 // タイルレイヤー追加

０３９

０４０

０４１

０４２

０４３

０４４

０４５

０４６

０４７

０４８

０４９

０５０

０５１

０５２

０５３

０５４

０５５

０５６

０５７

０５８

０５９

０６０

０６１

０６２

０６３

０６４

０６５

０６６

０６７

０６８

０６９

０７０

０６１

０６２

０６３

０６４

 L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

 attribution: '© OpenStreetMap contributors'

 }).addTo(map);

 // 東御門マーカー

 const goalMarker = L.marker(eastGate).addTo(map).bindPopup(" 駿府城公園 東御門

").openPopup();

 // 座標表示用

 const coordsDisplay = document.getElementById('coords-display');

 let routeLayer = null;

 let startMarker = null;

 // マウス移動時の座標表示

 map.on('mousemove', function(e) {

 const lat = e.latlng.lat.toFixed(6);

 const lng = e.latlng.lng.toFixed(6);

 coordsDisplay.textContent = `座標: ${lat}, ${lng}`;

 });

 // 地図クリック時の処理

 map.on('click', function(e) {

 const lat = e.latlng.lat.toFixed(6);

 const lng = e.latlng.lng.toFixed(6);

 const coordsText = `${lat}, ${lng}`;

 // クリップボードにコピー

 navigator.clipboard.writeText(coordsText)

 .then(() => {

 coordsDisplay.textContent = `コピーしました: ${coordsText}`;

 })

 .catch(err => {

 coordsDisplay.textContent = `コピー失敗: ${err}`;

 });

 // 既存マーカー・ルートを削除

 if (startMarker) map.removeLayer(startMarker);

 if (routeLayer) map.removeLayer(routeLayer);

 // 出発マーカー

 startMarker = L.marker([lat, lng]).addTo(map).bindPopup("出発地点").openPopup();

 // OSRM ルート API で徒歩ルート取得

 const osrmUrl = `https://router.project-osrm.org/route/v1/foot/${lng},${lat};${eastGate[1]},

${eastGate[0]}?overview=full&geometries=geojson`;

 fetch(osrmUrl)

０６５

０６６

０６７

０６８

０６９

０７０

０６１

０６２

０６３

０６４

０６５

０６６

０６７

０６８

０６９

０７０

０６１

０６２

０６３

 .then(res => res.json())

 .then(data => {

 const coords = data.routes[0].geometry.coordinates;

 const latlngs = coords.map(c => [c[1], c[0]]);

 // ルート表示

 routeLayer = L.polyline(latlngs, {

 color: 'green',

 weight: 5,

 opacity: 0.8

 }).addTo(map).bindPopup("徒歩ルート");

 })

 .catch(err => {

 alert("ルート取得に失敗しました。");

 console.error(err);

 });

 });

 </script>

</body>

</html>

【実行結果】

最後に、出発地点と目的地を自分で決めて、ルート検索できるようにする。右クリックするとリセットする機

能も付ける。

17-４.htm クリックした場所から、東御門までのルートを検索して表示させる。

００１

００２

００３

００４

００５

００６

００７

００８

００９

０１０

０１１

０１２

０１３

<!DOCTYPE html>

<html lang="ja">

<head>

 <meta charset="UTF-8">

 <title>クリックでルート表示（START / GOAL 文字のみ）</title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.9.4/dist/leaflet.css" />

 <style>

 #map {

 height: 600px;

 width: 100%;

 }

 #coords-display {

０１４

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

０３８

０３９

０４０

０４１

０４２

０４３

０４４

０４５

０４６

０４７

０４８

０４９

０５０

 position: absolute;

 top: 10px;

 right: 10px;

 background-color: rgba(255,255,255,0.95);

 padding: 6px 12px;

 border: 1px solid #ccc;

 border-radius: 6px;

 font-family: monospace;

 font-size: 14px;

 z-index: 1000;

 box-shadow: 0 0 5px rgba(0,0,0,0.2);

 }

 .label-text {

 font-weight: bold;

 font-size: 16px;

 white-space: nowrap;

 color: black;

 background: none;

 border: none;

 padding: 0;

 box-shadow: none;

 }

 </style>

</head>

<body>

 <h2>クリックで徒歩ルートを表示（START / GOAL 文字のみ）</h2>

 <div id="coords-display">座標: --</div>

 <div id="map"></div>

 <script src="https://unpkg.com/leaflet@1.9.4/dist/leaflet.js"></script>

 <script>

 const map = L.map('map').setView([34.977715, 138.384739], 15); // 駿府城公園周辺

 L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

 attribution: '© OpenStreetMap contributors'

 }).addTo(map);

 const coordsDisplay = document.getElementById('coords-display');

 let startCoord = null;

 let endCoord = null;

 let routeLine = null;

０５１

０５２

０５３

０５４

０５５

０５６

０５７

０５８

０５９

０６０

０６１

０６２

０６３

０６４

０６５

０６６

０６７

０６８

０６９

０７０

０７１

０７２

０７３

０７４

０６５

０６６

０６７

０６８

０６９

０７０

０６１

０６２

０６３

０６４

０６５

０６６

 let startMarker = null;

 let endMarker = null;

 let startLabel = null;

 let endLabel = null;

 // 座標表示

 map.on('mousemove', function(e) {

 coordsDisplay.textContent = ` 座 標 : ${e.latlng.lat.toFixed(6)},

${e.latlng.lng.toFixed(6)}`;

 });

 // ラベル生成用関数（文字のみ）

 function createLabel(latlng, text) {

 return L.marker(latlng, {

 icon: L.divIcon({

 className: 'label-text',

 html: text,

 iconAnchor: [-10, -10], // マーカーの上・左寄りに表示

 }),

 interactive: false

 }).addTo(map);

 }

 // ピンマーカー

 function createPinMarker(latlng) {

 return L.marker(latlng).addTo(map);

 }

 // 左クリック → START と GOAL を設定

 map.on('click', function(e) {

 const latlng = e.latlng;

 if (!startCoord) {

 startCoord = latlng;

 startMarker = createPinMarker(latlng);

 startLabel = createLabel(latlng, 'START');

 coordsDisplay.textContent = ` 出 発 地 点 ： ${latlng.lat.toFixed(6)},

${latlng.lng.toFixed(6)}`;

 } else if (!endCoord) {

 endCoord = latlng;

 endMarker = createPinMarker(latlng);

 endLabel = createLabel(latlng, 'GOAL');

 coordsDisplay.textContent = ` 目 的 地 ： ${latlng.lat.toFixed(6)},

０６７

０６８

０６９

０７０

０７１

０７２

０７３

０７４

０７５

０７６

０７７

０７８

０７９

０８０

０７０

０７１

０７２

０７３

０７４

０７５

０７６

０７７

０７８

０７９

０８０

０７０

０７１

０７２

０７３

０７４

０７５

０７６

０７７

０７８

０７９

${latlng.lng.toFixed(6)}`;

 const url = `https://router.project-

osrm.org/route/v1/foot/${startCoord.lng},${startCoord.lat};${endCoord.lng},${endCoor

d.lat}?overview=full&geometries=geojson`;

 fetch(url)

 .then(res => res.json())

 .then(data => {

 const coords = data.routes[0].geometry.coordinates;

 const latlngs = coords.map(c => [c[1], c[0]]);

 routeLine = L.polyline(latlngs, {

 color: 'blue',

 weight: 5,

 opacity: 0.8

 }).addTo(map).bindPopup("徒歩ルート");

 })

 .catch(err => {

 alert("ルートの取得に失敗しました。");

 console.error(err);

 });

 }

 });

 // 右クリック → リセット

 map.on('contextmenu', function(e) {

 startCoord = null;

 endCoord = null;

 if (routeLine) {

 map.removeLayer(routeLine);

 routeLine = null;

 }

 [startMarker, endMarker, startLabel, endLabel].forEach(m => {

 if (m) map.removeLayer(m);

 });

 startMarker = null;

 endMarker = null;

 startLabel = null;

 endLabel = null;

 coordsDisplay.textContent = "リセットしました。座標: --";

 });

０８０

０７０

０７１

 </script>

</body>

</html>

【実行結果】

