
プログラミング演習３（Python）

■Python の基本記法

○１．算術演算

加算 +

減算 -

乗算 *

除算 /

a を b で割ったときの余り

 a%b

累乗 **

切り捨て除算 //

【例１】

1+2

3**3

17//5

【問１】

35 を 3 で割ったときのあまりは？

○２．比較演算子

大なり >

以上 >=

小なり <

以下 <=

等しい ==

等しくない !=

※満たしている場合は True

 満たしていない場合は False

【例２】

2 > 1

1 != 1

○３．データ型

整数 int

浮動小数点数 float

文字列 str

など

※型は type()で確認できる

【例３―１】整数

var1=1

type(var1)

【例３－２】浮動小数点数

var2=1.56

type(var2)

【例３－３】文字列

var3='文字列'

type(var3)

【例３―４】その他

a = 1==1

type(a)

上記の「var1」,「var2」,「var3」は変数と

呼ばれ、数値や文字列などが入る箱のよう

なものである。

○４．リスト

str_list = ['a','b','c']

num_list = [1,2,3,4,5]

リストは、上記のように複数の数値や文字

列を格納することができる

要素番号は０から始まり

２番目を取り出す場合は

str_list[2]

と指定して取り出す

・リストの出力

for 変数名 in リスト名:

 処理

の書式を使ってリストを出力できる

数値や文字の出力には組み込み関数の

print()を使う

【例４－１】リストの出力

list[0,1,2]

for listout in list

 print(listout)

・リストの編集

【例４－２】

num_list[0]

num_list[0:2]

要素を削除するときは

remove や del を使う

要素を指定するか、

要素番号を指定するか使い分ける

【例４－３】要素を指定する場合

str_list.remove('a')

print(str_list)

【例４－４】要素番号を指定する場合

del num_list[2]

print(num_list)

要素を追加するときは

append を使う

【例４－５】

str_list = ['a','b','c']

str_list.append('d')

print(str_list)

◎５．条件文

if ～(elif)else～のような形で

条件を指定する

a = "blue"

if a=='red':

 print('apple')

elif a=="blue":

 print('sky')

else:

 print('earth')

◎６．ループ処理

繰り返しの処理をする際には

for 文を使う

for 変数名 in データの集まり

という形にする

【例６－１】0-9 までの値をすべて足す

n=0

for i in range(10):

 n += i

print(n)

※range(10)は 0 から 9までの整数を

順番に返す

ループ処理と条件文を合わせたような処理

をするときは

while を使う

while のある条件を満たす間は

while 以下の処理を実行し続ける

下記は nが 10 より小さい間は

その数を表示させ

10 になったら、その下の処理

に移る。

n=0

while n < 10:

 print(n)

 n += 1

print('finish:',n)

〇７．関数

何度も発生する処理は関数として

定義しておくと可動性があがる

下記のように

def(引数 1,引数 2,引数 3,...）

と定義する

def sum(a,b):

 return a + b

関数を利用するときは

次のように引数を与える

sum(2,5)

（＋α）

■タプル

リストと同様に複数の値を

保存できる

タプルは（）で囲んで定義する

a = (0,1,8,12)

print(a)

【例】要素番号を使って取り出す

print(a[3])

※タプルは変更できないので

 下記のように書くとエラーになる

a = (0,1,8,12)

a[2] = 3

■辞書（ディクショナリ）

key と value をセットにした構造

{}で値を定義する

dict = {'a':20,'b':30,'c':15}

key を指定することで値を取り出す

事ができる

【例】

print(dict['a'])

■print()のキーワード引数を使う

 print()はいくつかのキーワード引数を

指定できる。

print()のキーワード引数

引数：説明

sep：指定した文字で区切りながら出力する

end：指定した文字を最後に出力する

file：write メソッドを持つオブジェクト

（ファイルなど）に出力する

flush：呼び出したときにメモリに一時的に

保持せず即時書き込む

・sep

sep=','のように区切り文字にカンマを指

定すると CSV データのような出力になる

for i in range(10)

 print(i,i+1,i+2,sep=',')

（結果）

0,1,2

1,2,3

・・・

9,10,11

・end

 指定したデータを出力するときに最後の

文字を指定する。デフォルトの値は改行文

字の「\n」である。Print が実行されるたび

に改行されるのはデフォルトが改行になっ

ているからである。ここではこの設定を変

えて end=''として、改行されないようにす

る

（コード）

for i in range(10):

 print(i, end='')

print()

(結果)

0123456789

・file と flush

通常 print を実行すると端末に出力される

が、引数の file を指定すると、その内容を

ファイルに出力できる。

多くの場合、file と flush は一緒に使い、

flush は print()が実行されるごとに、即時

書き込みするかどうかを決めるフラグであ

る。デフォルトでは False となっていて、即

時書き込みはしない設定になっている。そ

れはある程度データ量がたまるまでメモリ

に保持しておいてまとめて出力したほうが

効率がいいからである。そのため、print()

を実行するごとに出力したい理由がなけれ

ば flush を指定する必要なない。

ここでは、flush=True に設定している。

filename = 'print.csv'

with open(filename,'w') as f:

print(1,2,3, sep=',', file=f, flush=True)

print(4,5,6, sep=',', file=f, flush=True)

print(7,8,9, sep=',', file=f, flush=True)

■フォーマット済み文字列リテラル

文字列に変数の値を表示するとき、フォ

ーマット済み文字列リテラルを使うと楽で

ある。

value = 'ABC'

print(f'変数の値は {value}’）

従来は

print('変数の値は %s' % value）

のように文字列なら%s,整数なら%d と変数

の方によって指定を変える必要があった。

■文字列の表現方法について

 文字列を扱う時、「'」「"」の２種類の記号

で囲って扱えるようにすることで、どちら

かの記号を表示させることができる。

value='ABC'

print(f'変数の値は"{value}"')

print(f"変数の値は'{value}'")

{}（波かっこ）はそのまま書けばよい

print(f"変数の値は{{value}}")

■便利な文字列表現

フォーマット済み文字列リテラルを使うと、

次のようなちょっとしたカスタマイズがで

きる。

・指定した桁数でゼロ埋め

value=5

print(f'3 桁でゼロ埋め：{value:03}')

・３桁区切りでカンマを表示

value=123456789

print(f'3 桁でカンマ区切り：{value:,}')

print()

・指定した桁数で右寄せ・中央・左寄せ

value='右寄せ'

print(f'8 桁で：{value:_>8}')

value='左寄せ'

print(f'8 桁で：{value:_<8}')

value='中央'

print(f'8 桁で：{value:_^8}')

（参考）

森本哲也・中野正輝・池徹・岡田幸大著「で

きる仕事がはかどる Python 自動処理

全部入り」（インプレス）

■リスト内包表記

下記のような、for 文でリストに値を追加し

ていくような処理をする際には、リスト内

包記法を使う

list_a=[]

for i in range(10):

list_a.append(i**2)

print(list_a)

というコードをリスト内に for 文を書くよ

うなイメージで、リスト内包記法を使うと

list_b=[i**2 for i in range(10)]

print(list_b)

