
プログラミング演習３（Python）⑩ GUIツールキット tkinterを使う

 Pythonでは、操作できる画面を作るときは、標準ライブラリの GUIツールキット

「tkinter」を使う。この tkinterを使うとウィンドウの上にボタンやラベルを並べて操作

ができる画面を作ることができる。

ここでは、まずプログラムを実行するとおみくじの結果を表示するプログラムを作り、

それをウィンドウ上のボタンを押したら、そのウィンドウにおみくじの結果が出るように

改良する。

１０－１．おみくじプログラム

py10-1.py おみくじの結果を表示する

001

002

003

import random

omikuji = ["大吉","中吉","小吉","吉","末吉","凶"]

print(random.choice(omikuji))

（解説）

１行目 randomモジュールをインポート

２行目 表示するおみくじの結果の文字をリストに入れる

３行目 リストからランダムに要素を一つ選択して返す random.choice()でおみくじの結

果を表示する

（実行結果）

１０－２．GUIツールキットを使って、ボタンを押して結果を表示する

py10-2.py 学習用データを読み込んで表示する

001

002

003

004

005

006

007

008

009

010

011

import tkinter as tk

import random

def omikuji():

 omikujikekka = ["大吉","中吉","小吉","吉","末吉","凶"]

 lbl.configure(text=random.choice(omikujikekka))

gamen = tk.Tk()

gamen.geometry("150x100")

lbl=tk.Label(text="LABEL")

btn=tk.Button(text="PUSH",command=omikuji)

lbl.pack()

btn.pack()

012 tk.mainloop()

（解説）

１行目 tkinterをインポートして tkで使えるようにする

２行目 randomをインポートして乱数が使えるようにする

３～５行目 おみくじの結果を得る omikuji関数を設定する

 ４行目 omikujikekka リストの要素を設定する

５行目 ラベルの文字を omikujikekkaリストの要素をランダムで選んだ一つにする

６，７行目 150×100のサイズのウィンドウを作る。※xは半角英数字の x(エックス)

 ここでは gamen 変数に入れて処理をしているが、root変数が使われることが多

い。

８行目 lblというラベルを作り、LABELという文字が表示されるように設定する

９行目 btnというボタンを作り、PUSHという文字が表示されるようにし、

ボタンを押したら omikuji関数が実行されるよう設定する

10行目 lblという名前のラベルを配置する

11行目 btnという名前のボタンを配置する

12行目 lblと btnを配置した gamenウィンドウを動かす

(実行結果)

（参考）森 巧尚 著「Python1 年生(第２版) 体験してわかる！会話でまなべる！プログ

ラミングのしくみ」（株式会社 翔泳社）

PUSHボタ

ンを押すと

…

１０－３ 値を入力して、結果を返す

ｔkinterでは Entryと呼ばれるテキストボックスから、入力した文字を取得することができ

る。

また、ラベルやボタンなども含め、packだけでなく、gridや placeなどを使っても配置でき

る。

py10-3.py 10進数を入力して、ボタンを押すと、2進数に変換して表示する

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

import tkinter as tk

def ju2ni():

 jussin = int(ent10.get())

 ent2.delete(0, tk.END)

 nisin=""

 nisinout = ""

 while jussin >= 1:

 nisin= str(int(jussin) % 2) + nisin

 jussin = int(jussin) // 2

 ent2.insert(0,nisin)

gamen = tk.Tk()

gamen.title('10進から 2進へ')

gamen.geometry("260x100")

gamen.configure(bg="skyblue")

lbltitle=tk.Label(text="10進数を入力してください（1以降の整数）")

lbltitle.pack(anchor=tk.W)

lbl1 = tk.Label(gamen,text="10進数")

lbl1.place(x=5,y=30)

ent10 = tk.Entry(gamen, width=5, font=16, justify="right")

ent10.place(x=50,y=30)

btn=tk.Button(gamen, text="PUSH",command=ju2ni)

btn.place(x=180,y=30)

lbl2=tk.Label(gamen, text="2進数")

lbl2.place(x=5,y=60)

ent2 = tk.Entry(gamen, width=16, font=16, justify="right")

ent2.place(x=50,y=60)

tk.mainloop()

（解説）

１行目 tkinterをインポートして tkで使えるようにする

２～１０行目 10進数から 2進数に変換する ju2ni関数

３行目 ent10に入力した文字を取得する

 ４行目 ent2を初期化する

５、６行目 変数の定義、初期化 nisin,nisinoutは文字列で処理する

７～９行目 １０進数から２進数に変換する繰り返し処理（２で割って余りを拾う）

 ８行目 ２で割った余りを、前の文字列の前に入れる

 ９行目 切り捨て除算を jussinに代入する

１０行目 結果を表示する ent2に nisinの値を挿入する

１１～２７行目 ウィンドウの定義

１１行目 ウィンドウを gamenとする

１２行目 タイトルバーにタイトル「10進から 2進へ」を表示させる

１３行目 幅２６０，高さ１００とする

１４行目 背景色を skyblue とする

１５行目 lbltitleというラベルを作り、「10進数を入力してください（1以降の整

数）」と文字が表示されるように設定する

１６行目 lbltitleを左揃えで配置する

１７行目 lbl1というラベルを作り、10進数と表示させる

１８行目 lbl1をｘ＝5、ｙ＝30の位置に配置する

１９行目 ent10というテキストボックスを gamenに作り、幅を５、文字の大きさを１

６、文字を右揃えにする

２０行目 ent10を x=50 と y=30に配置する

２１行目 btnというボタンを gamenに作り、PUSHという文字を表示させ、クリックし

たら ju2ni 関数が実行されるようにする

２２行目 btnを x=180 y=30 に配置する

２３行目 lbl2というラベルを作り、2進数と表示させる

２４行目 lbl2をｘ＝5、ｙ＝60の位置に配置する

２５行目 ent2というテキストボックスを gamenに作り、幅を１６、文字の大きさを１

６、文字を右揃えにする

２６行目 ent2を x=50 と y=60に配置する

２７行目 ラベルなどを配置した gamenウィンドウを動かす

(実行結果)

１０－４ キャンバスを使う

ｔkinterで作ったウィンドウには、入力を受け付けるボタン、文字列を表示するラベルなど

のほかに、グラフィックを描画するキャンバスという部品を配置することができる。今回は、キ

ャンバスを使ってプログラムを作成していく。

座標について

 コンピュータの画面の原点も、個々のウィンドウの原点も左上が原点になる。横方向がｘ軸、

縦方向がｙ軸となる。ｙ軸は数学などとは逆で、値が大きくなると下方向に進んでいく。

py10-4.py キャンバスを配置して、軸と線を引く

001

002

003

004

005

006

007

008

009

import tkinter as tk

gamen = tk.Tk()

gamen.title("キャンバスに軸と斜線を引く")

cvs = tk.Canvas(width=600, height=400,bg = "black")

cvs.create_line(300,0,300,400,fill="green")

cvs.create_line(0,200,600,200,fill="blue")

cvs.create_line(50,100,550,300,fill="red",width=5)

cvs.pack()

tk.mainloop()

（実行結果）

10-5 キャンバスにいろいろな図形を描く

キャンバスに図形を描く命令は、下表のとおりである。

表１０－５ 図形の描画命令

図形 描画命令 描画イメージ

線

create_line(x1,y1,x2,y2,fill=色,width=線の太さ)

・座標の引数は[x1,y1,x2,y2]のように配列でも指定できる。

・三点以上をまとめて指定し、それらを線で結べる。

・三点以上指定して smooth=Trueという引数を加えると曲線になる

（ｘ１，ｙ１）

(x2，y2)

矩形
create_rectangle(x1,y1,x2,y2,fill=塗る色、outline=周

りの色,width=線の太さ)

（ｘ１，ｙ１）

(x2，y2)

楕円

create_oval(x1,y1,x2,y2,fill=塗る色,outline=周りの線

の色,width=線の太さ)

・(x1,y1)を左上角、(x2,y2)を右上角とした矩形の中に入る楕円を描

く。

（ｘ１，ｙ１）

(x2，y2)

多角形

create_polygon([x1,y1,x2,y2,x3,y3,・・,・・], fill=塗る

色,outline=周りの線の色,width=線の太さ)

・複数の点を指定する

（ｘ１，ｙ１）

 （・・，・・）

（ｘ2，ｙ2）

（ｘ3，ｙ3）

扇形

（円弧）

create_arc(x1,y1,x2,y2, fill=塗る色,outline=周りの線

の色,start=開始角,extent=何度開くか, style=tkinter.形

状

・角度は度（degree）の値で指定する。

・style=は省略可。指定するなら ARC,CHORD,PIESLICEのいずれ

かを記す。

・ARCは弧、CHORDは弦の意味。PIESLICEは一部を切り取ったパイ

の形。

（ｘ１，ｙ１）

 （ｘ2，ｙ2）

※引数の fillが塗りつぶしの色、outlineが図形の枠線の色、widthが線の太さを指定し、

塗りつぶしの色を設定しない場合は、線だけで図形が描かれる。

py10-5.py キャンバスにいろいろな図形を描く

001

002

003

004

005

006

007

008

009

010

011

import tkinter as tk

gamen = tk.Tk()

gamen.title("キャンバスに図形を描く")

cvs = tk.Canvas(width=600, height=400, bg="white")

cvs.create_line(100, 50, 125, 125, 200, 50, 250, 110, smooth=True, width=10)

cvs.create_rectangle(100, 200, 200, 300, fill="yellow", width=0)

cvs.create_oval(350, 50, 500, 150, outline="blue", width=10)

cvs.create_polygon(300, 350, 225, 270, 375, 270, fill="pink", outline="red", width=10)

cvs.create_arc(400, 200, 500, 300, start=45, extent=270, fill="orange", outline="")

cvs.pack()

tk.mainloop()

（実行結果）

10-6 キャンバスに文字を表示する

 キャンバスに文字列を表示するには、下記のように記述する

cvs.create_text(ｘ座標, y座標，text = 文字列 , font=(フォントの種類,サイズ))

py10-6.py キャンバスに文字列を表示する

001

002

003

004

005

006

007

008

009

010

011

import tkinter as tk

gamen = tk.Tk()

gamen.title("キャンバスに文字列を表示する")

cvs = tk.Canvas(width=600, height=400, bg="white")

cvs.create_line(100, 50, 125, 125, 200, 50, 250, 110, smooth=True, width=10)

cvs.create_text(150, 225, text="★", fill="yellow", font=("ＭＳゴシック",120))

cvs.create_oval(350, 50, 500, 150, outline="blue", width=10)

cvs.create_polygon(300, 350, 225, 270, 375, 270, fill="pink", outline="red", width=10)

cvs.create_arc(400, 200, 500, 300, start=45, extent=270, fill="orange", outline="")

cvs.pack()

tk.mainloop()

（解説）

６行目 create_textを使って、フォントはMSゴシック、サイズは 120の「★」の文字を表示

させている。

（実行結果）

10-7 配列を使って色を扱う

ゲーム制作で規則正しくブロックを配置するときなどには配列を扱う。ここでは、図形の矩

形を連続して配置して、配列で定義された色を配色していく。

py10-7.py 配列で定義した色を配色する

001

002

003

004

005

006

007

008

009

010

import tkinter as tk

gamen = tk.Tk()

gamen.title("配列で色を定義する")

cvs = tk.Canvas(width=700, height=100)

rainbow=["red","orange","yellow","green","blue","indigo","violet"]

for i in range(7):

 X=i*100

 cvs.create_rectangle(X,0,X+100,100,fill=rainbow[i],width=0)

cvs.pack()

tk.mainloop()

（実行結果）

py10-7-2.py 二次元配列で定義した色を配色する

001

002

003

004

005

006

007

008

009

010

011

012

013

import tkinter as tk

gamen = tk.Tk()

gamen.title("二次元配列で色を定義する")

cvs = tk.Canvas(width=300, height=300)

color=[

 ["red","orange","yellow"],

 ["green","blue","indigo"],

 ["violet","pink","cyan"]

]

for j in range(3):

 for i in range(3):

 X=i*100

 Y=j*100

014

015

016

 cvs.create_oval(X,Y,X+100,Y+100,fill=color[i][j])

cvs.pack()

tk.mainloop()

（実行結果）

１0-8 画像ファイルを表示する

画像ファイルをプログラムファイルと同じ場所にある picフォルダに入れ、

py10-8.py 画像ファイルを表示する

001

002

003

004

005

006

007

008

009

010

import tkinter as tk

gamen = tk.Tk()

gamen.title("キャンパスに画像を表示する")

cvs = tk.Canvas(width=600, height=400)

img = tk.PhotoImage(file='img/img10-8-1.png')

cvs.create_image(300,200,image=img)

img2 = tk.PhotoImage(file='img/img10-8-2.png')

cvs.create_image(300,200,image=img2)

cvs.pack()

tk.mainloop()

（説明）

５行目 PhotoImageで変数 imgに背景の画像（imgフォルダの img10-8-1.png）を読

み込む

６行目 imgに読み込んだ画像を（300,200）が画像の中心になるように表示する

7、８行目 ５，６行目と同じ要領で顔の画像 img10-8-2.pngファイルを読み込んで、表示す

る

（実行結果）

10-９ リアルタイム処理

 ゲームのプログラムは、常に入力を受け付け、画面を書き換えながら描画する。背景がスクロ

ールしたり、ギャラクターが動き続けたりなどの、時間軸に沿って続いていく処理は、リアルタ

イム処理と呼ぶ。ここでは Pythonでリアルタイム処理を行う方法を説明する。

 tkinterで

py10-9.py 数をカウントする

001

002

003

004

005

006

007

008

009

010

011

012

013

014

import tkinter as tk

n = 0

def count():

 global n

 n = n + 1

 cvs.delete("all")

 cvs.create_text(100, 75, text=n, font=("System", 80))

 gamen.after(1000, count)

gamen = tk.Tk()

gamen.title("数を表示する")

cvs = tk.Canvas(width=200, height=150)

cvs.pack()

count()

tk.mainloop()

(解説)

２行目 グローバル変数ｎの定義

４行目 グローバル変数ｎを関数内で変更する

 グローバル変数は、プログラムが終了するまで保持され、関数内で宣言したローカル変

数の値は、それを宣言した関数を呼び出すたびに初期化される。つまり変数ｎを関数

count()内で宣言すると、読み出すたびにｎは初期化され、数をカウントすることができなく

なる。

５行目 ｎの値を１増やす

６行目 キャンバスに描いたものを削除する。 こうすることで何もない状態で数字が表示でき

るとともに、上書きせずにすべてを消しておくことで、処理が重たくなることがなくなる。

７行目 ｎの値をこの行の設定で表示する。

８行目 指定時間を１０００ミリ秒＝１秒として、１秒後に count（）を呼び出している。こうする

ことで、延々と１秒間隔でｎを１ずつ増やして表示し続けるようになる。

（実行結果）

… …

10-10 イベント

 ユーザーがキーボードのキーを押したり、マウスを操作したりすることをイベントという。たと

えば、ウィンドウをクリックすると、ウィンドウに対してクリックイベントが発生する。キーボード

のキーを押すとキーイベントが発生する。

 tkinterで作ったウィンドウでは bind()という命令でイベントを受け取る。bind()は、次の

ように記述する。

ウィンドウのオブジェクト変数.bind(イベントの種類，呼び出す関数)

bind()で取得できるイベントは下表のとおりである。

表１０－10 bind()で取得できるイベント

イベント イベントの内容

<Motion> マウスポインタを動かした

<Button>あるいは<ButtonPress> マウスボタンを押した

<ButtonRelease> マウスボタンを離した

<Key>あるいは<KeyPress> キーを押した

<KeyRelease> キーを離した

py10-10.py マウスポインタの座標を表示する

001

002

003

004

005

006

007

008

009

import tkinter as tk

FNT = ("System", 40)

def move(e):

 cvs.delete("all")

 s = "({}, {})".format(e.x, e.y)

 cvs.create_text(e.x, e.y, text=s, font=FNT)

gamen = tk.Tk()

gamen.title("マウスポインタの座標")

gamen.bind("<Motion>", move)

010

011

012

cvs = tk.Canvas(width=600, height=400)

cvs.pack()

tk.mainloop()

(解説)

３行目 マウスを動かしたときに呼び出す関数move()

 4行目 キャンバスに描いたものを削除

５行目 format（）という命令で、ポインタの座標を文字列にして変数ｓに代入している。こ

の命令は、formatの前の文字列の｛｝の部分を引数の値に置き換えるものである。

 ６行目 変数ｓに入れた文字列を表示する

９行目 マウスポインタを動かしたら、move（）関数を呼び出す

(実行結果)

py10-10-2.py マウスポインタの座標を表示する２（複数のイベントを使う）

001

002

003

004

005

006

007

008

009

010

011

012

013

014

import tkinter as tk

FNT = ("System", 40)

def move(e):

 cvs.delete("all")

 s = "({}, {})".format(e.x, e.y)

 cvs.create_text(e.x, e.y, text=s, font=FNT)

def move2(e):

 cvs.delete("all")

 s = "({}, {})".format(e.x, e.y)

 cvs.create_text(300, 200, text=s, font=FNT)

gamen = tk.Tk()

gamen.title("マウスポインタの座標")

gamen.bind("<Motion>", move)

gamen.bind("<Button>", move2)

015

016

017

cvs = tk.Canvas(width=600, height=400)

cvs.pack()

tk.mainloop()

(解説)

７～１０行目 move2関数：マウスの座標をウィンドウの真ん中で表示する

１４行目 クリックしたら、move2関数を呼び出す

py10-10-3.py マウスポインタを追いかける

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

import tkinter as tk

mx = 400

my = 300

def move(e):

 global mx, my

 mx = e.x

 my = e.y

cx = 400

cy = 300

cr = 30

def main():

 global cx, cy

 if cy>my: cy -= 10

 if cy<my: cy += 10

 if cx>mx: cx -= 10

 if cx<mx: cx += 10

 cvs.delete("all")

 cvs.create_oval(cx-cr, cy-cr, cx+cr, cy+cr, fill="red", outline="pink")

 gamen.after(30, main)

gamen = tk.Tk()

gamen.title("ポインタを追い掛ける図形")

gamen.resizable(False, False)

gamen.bind("<Motion>", move)

cvs = tk.Canvas(width=400, height=300, bg="black")

cvs.pack()

main()

tk.mainloop()

(解説)

２，３行目 ｍｘ，ｍｙをグローバル変数として定義する

６、７行目 ｍｘ，ｍｙにマウスポインタの座標を代入する

８～10行目 円の中心のｘ座標をｃｘ，ｙ座標をｃｙとし、半径を３０とする

１１行目 ｍａｉｎ関数

１２行目 グローバル変数ｃｘ、ｃｙを変更できるようにする。

１３～１６行目 マウスポインタの位置と円の中心を比較して、円の座標がマウスの座標より

小さければ大きくなるように動かし、逆に大きければ小さくなるように動かす。これにより、円

がマウスポインタに近づくようになる。

１８行目 変数ｃｘ、ｃｙ、ｃｒを使って、円を描く。

１９行目 30ミリ秒＝０．０３秒後に１１行目main関数を呼び出す

２２行目 resizable()命令でウィンドウの大きさを変えられないようにする。

２３行目 マウスを動かしたらmove関数を呼び出し、マウスポインタの座標を更新する

（実行結果）

キーの値は bind（）命令を使って知ることができる。＜Key＞イベントを受け取る関数には

引数を設け、def pkey(e)と関数を定義した場合、e.keycodeや e.keysymが押された

キーの値になる。

キーコードとシンボルで押されたキーが判定でき、キーコードはキーを表す数値で、

WindowsとMacで値が異なるキーがある。シンボルはキー名を表す文字列で、Windows

とMacで共通である。

表１０－10－３ キーのシンボル

キー イベントの内容

０～９ ０～９

A～Z a～z

↑↓←→ Up,Down,Left,Right

（空白） Space

Enter Return

Shift(左右) Shift_L,Shift_R

Esc Escape

py10-10-4.py 押されたキーの値を表示する

001

002

003

004

005

006

007

008

009

010

011

012

import tkinter as tk

FNT = ("System", 25)

def pkey(e):

 cvs.delete("all")

 cvs.create_text(150, 70, text="コード="+str(e.keycode), font=FNT)

 cvs.create_text(150, 130, text="シンボル="+e.keysym, font=FNT)

gamen = tk.Tk()

gamen.title("キーの値")

gamen.bind("<Key>", pkey)

cvs = tk.Canvas(width=300, height=200)

cvs.pack()

tk.mainloop()

（解説）

３行目 pkey(e)関数 キーを押したときに呼び出す

 ４行目 キャンバスに描いたものを削除

 ５行目 keycodeの値の表示

 ６行目 keysymの値を表示

１１行目 キーが押されたら４行目の pkey関数を呼び出す

（実行結果）

取得したキーの値を使って、文字列を表示させたり、背景色を変えたりする。ここでは、１～

８のキーと、色の英単語と色を対応させて表示する。

表１０－１０－４ キーと色の対応表

キー 色 キー 色

１ Red 5 Magenta

2 Green 6 Yellow

3 Blue 7 White

4 Cyan 8 Black

py10-10-5.py 押されたキーに合わせて、文字列を表示させ、背景色を変更する

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

import tkinter as tk

FNT = ("System", 50,"bold")

COLOR = ["red","green","blue","cyan","magenta","yellow","white","black"]

def pkey(e):

 k = e.keysym

 if "1"<=k and k<="8":

 c = int(k)-1

 cvs.delete("all")

 cvs["bg"] = COLOR[c]

 cvs.create_text(150, 100, text=COLOR[c], fill="gray", font=FNT)

gamen = tk.Tk()

gamen.title("1～8キーを押そう")

gamen.bind("<Key>", pkey)

cvs = tk.Canvas(width=300, height=200)

cvs.pack()

tk.mainloop()

（解説）

３行目 配列で色の英単語を定義

４行目 キーを押したときに呼び出す関数 pkey

 ５行目 変数ｋにキーシンボルを代入

 ６行目 １から８までのキーが押されたら、７～１０行目の処理をする

 ７行目 ｋの値を整数にして１を引いた値をｃに代入（※配列の添え字は０から始まる）

 ８行目 キャンバスで描いたものを削除

 ９行目 キャンパスの背景色を変更

 １０行目 英単語を表示

１３行目 キーが押されたとき、pkey関数を呼び出す

（実行結果）

10-11 ヒットチェック①（円）

 ゲームでよく使うヒットチェック（物体同士が接触しているか判断するアルゴリズム）について

説明する。ヒットチェックは当たり判定、衝突判定、接触判定と呼ばれることもある。

 たとえば、円 A（ｘ１,ｙ１）と円 B（ｘ２,ｙ２）があり、下図のように接触していた場合、三平方の定

理から

ｄ**2＝（ｘ２－ｘ１）**２＋（ｙ２－ｙ１）**２

 となり、

 ｄ＝math.sqrt((x2-x1)**2+（ｙ２－ｙ１）**２))

 または

 ｄ＝((x2-x1)**2+（ｙ２－ｙ１）**２))**(0.5)

 となる。

図 10-11-1-2 円の外周が触れ合う例

(x1,y1)

(x2,y2)

ｄ

（y2-y1）

（x2-x1）

c

a

b

ｃ2 = a2 + b2

図 10-11-1-1 三平方の定理

左上が原点、右や下へ

行くほど値が大きくなる

py10-11-1.py ２つの円が接触したら、捜査している円の塗り色を変える

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

import tkinter as tk

import math

x1 = 50

y1 = 50

r1 = 50

x2 = 300

y2 = 200

r2 = 100

def pkey(e):

 global x1, y1

 if e.keysym=="Up": y1 -= 10

 if e.keysym=="Down": y1 += 10

 if e.keysym=="Left": x1 -= 10

 if e.keysym=="Right": x1 += 10

 d = math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))

 col = "yellow"

 if d<=r1+r2: col = "red"

 cvs.delete("RED_CIRCLE")

 cvs.create_oval(x1-r1, y1-

r1, x1+r1, y1+r1, fill=col, outline="white", tag="RED_CIRCLE")

gamen = tk.Tk()

gamen.title("円によるヒットチェック：矢印キーで操作")

gamen.bind("<Key>", pkey)

cvs = tk.Canvas(width=600, height=400, bg="black")

cvs.pack()

cvs.create_oval(x1-r1, y1-

r1, x1+r1, y1+r1, fill="yellow", outline="white", tag="RED_CIRCLE")

cvs.create_oval(x2-r2, y2-r2, x2+r2, y2+r2, fill="blue", outline="white")

tk.mainloop()

（実行結果）

矩形によるヒットチェックをする場合は、下図のように矩形Ａ（幅ｗ１，高さｈ１）、矩形Ｂ（幅ｗ

２，高さｈ２）として、矩形Ａの中心座標を（ｘ１，ｙ１）、矩形Ｂの中心座標を（ｘ２，ｙ２）とした場合、ｘ２

－ｘ１の絶対値がｗ１/2+ｗ2/2よりも小さくて、かつ、ｙ２－y１の絶対値がｈ１/2+ｈ2/2よりも小

さい場合に矩形が重なる。絶対値は abs（）を使って求められるので、

abs(x2-x1)<=(w1+w2)/2 and abs(y2-y1)<=(h1+h2)/2

と表現できる。

py10-11-2.py ２つの矩形が接触したら、操作している矩形の塗り色を変える。

001

002

003

004

import tkinter as tk

import math

x1 = 100

y1 = 100

(x1,y1)

(x2,y2)

ｗ１/2

ｗ2/2

x2 – x1

(x1,y1)

(x2,y2)

h2/2

ｈ1/2

y2- y1

図 10-11-2-1 ｘ座標の差が小さくなる場合 図 10-11-2-2 ｙ座標の差が小さくなる場合

(x1,y1)

(x2,y2)

図 10-11-2-3 両方小さくなる場合

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

w1 = 50

h1 = 50

x2 = 300

y2 = 200

w2 = 200

h2 = 100

def move(e):

 global x1, y1

 x1 = e.x

 y1 = e.y

 col = "yellow"

 if abs(x2-x1)<=(w1+w2)/2 and abs(y2-y1)<=(h1+h2)/2:

 col = "red"

 cvs.delete("RED_RECT")

 cvs.create_rectangle(x1-w1/2, y1-h1/2, x1+w1/2, y1+h1/2, fill=col, outline="white", tag="RED_RECT")

gamen = tk.Tk()

gamen.title("矩形によるヒットチェック：マウスで操作")

gamen.bind("<Motion>", move)

cvs = tk.Canvas(width=600, height=400, bg="black")

cvs.pack()

cvs.create_rectangle(x1-w1/2, y1-

h1/2, x1+w1/2, y1+h1/2, fill="red", outline="white", tag="RED_RECT")

cvs.create_rectangle(x2-w2/2, y2-h2/2, x2+w2/2, y2+h2/2, fill="blue", outline="white")

tk.mainloop()

（実行結果）

（参考書籍） 廣瀬豪「Pythonではじめるゲーム制作超入門」（インプレス）

10-12 アニメーションをさせる

最終的にモグラたたきゲームを作る準備として、モグラをアニメーションをさせる仕組みを

作る。また、メインループの中にシーンを設定して、シーンを切り替えさせる。

py10-12.py モグラの顔を穴から出したり引っ込めたりする

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

import tkinter as tk

scene = "タイトル"

mogu_a = 0

def pkey(e):

 global scene

 if e.keysym=="space":

 scene = "ゲーム"

 if e.keysym=="Return":

 scene = "タイトル"

def main():

 global mogu_a

 cvs.delete("all")

 cvs.create_image(300, 200, image=bg)

 if scene=="タイトル":

 cvs.create_image(300, 200, image=ilst)

 cvs.create_text(300, 80, text="もぐらたたきゲーム", font=("System",50), fill="Black")

 cvs.create_text(300, 300, text="press [SPACE] key",

font=("System",30), fill="Black")

 if scene=="ゲーム":

 mogu_a = mogu_a + 1

 cvs.create_image(300, 200, image=mogu[mogu_a%7])

 gamen.after(100, main)

gamen = tk.Tk()

gamen.bind("<Key>", pkey)

cvs = tk.Canvas(width=600, height=400)

cvs.pack()

ilst = tk.PhotoImage(file="img/opillust.png")

bg = tk.PhotoImage(file="img/bg.png")

mogu = [

 tk.PhotoImage(file="img/mpic0.png"),

 tk.PhotoImage(file="img/mpic1.png"),

031

032

033

034

035

036

037

038

039

 tk.PhotoImage(file="img/mpic2.png"),

 tk.PhotoImage(file="img/mpic3.png"),

 tk.PhotoImage(file="img/mpic2.png"),

 tk.PhotoImage(file="img/mpic1.png"),

 tk.PhotoImage(file="img/mpic0.png")

]

main()

tk.mainloop()

（解説）

４～９行目 キー入力で帰って来るキーシンボルで条件式造り、シーンを切り替える

１０～３２行目 メインループ

１４～１７行目 タイトルのシーン：タイトルの文字やイラストを表示させる

１８～２０行目 ゲームのシーン：ここではモグラをアニメーションさせるだけ

２６行目 最初のページに表示させるイラストを ilstに設定

２７行目 背景の画像をｂｇに設定

２８～３６行目 モグラの顔の画像を配列moguに入れる

（完成例）

10-1３ もぐらたたきゲームを作る

いままで勉強したことを使ってゲームを作りなさい。

（完成例）

