
プログラミング演習３（Python）⑪ 動画処理

１．【AI】MP4ファイルを生成する

ここでは、Gemini と相談して、イラストに効果を付けた動画ファイルを生成するファイルを作ってもら

う。

自分で用意したイラストを回転させた動画をWMVファイルとして書き出すプログラムを Pythonで作っ

て。

とすると、WMV は直接サポートされていないとし、MP4 で作成するプログラムを作成した。

今回は

Pillow（画像の回転）と**MoviePy**（動画作成）、NumPy（高速な数値計算や多次元配列の操作）を使

用して、回転動画を MP4 ファイルとして作成した。

事前にライブラリのインストールをする。

pip install Pillow moviepy numpy

py11-1.py MP4ファイルの生成（静止画を回転させた動画を作る）

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

import os

from PIL import Image

from moviepy.editor import ImageSequenceClip

def create_rotating_video(input_image_path, output_video_path, duration_seconds,

fps=30, total_rotation_degrees=360):

 """

 指定された画像を回転させながら動画を生成する関数。

 Args:

 input_image_path (str): 入力画像ファイルへのパス。

 output_video_path (str): 出力動画ファイルへのパス（例: output.mp4）。

 duration_seconds (int): 動画の長さ（秒）。

 fps (int): フレームレート（Frames Per Second）。

 total_rotation_degrees (int): 動画全体で回転させる合計角度（度）。

 """

 try:

 # 1. 画像を開く

 original_image = Image.open(input_image_path)

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

 except FileNotFoundError:

 print(f"エラー: 画像ファイルが見つかりません - {input_image_path}")

 return

 except Exception as e:

 print(f"エラー: 画像の読み込み中にエラーが発生しました - {e}")

 return

 # 2. 全フレーム数と各フレームの回転角度を計算

 total_frames = duration_seconds * fps

 # 1フレームあたりの回転角度 (反時計回り)

 degree_per_frame = total_rotation_degrees / total_frames

 print(f" 動 画 の 生 成 を 開 始 し ま す : {total_frames} フ レ ー ム ,

{degree_per_frame:.2f}度/フレーム")

 # 3. フレームのリストを作成

 frames = []

 for i in range(total_frames):

 # 現在の回転角度 (Pillowの rotate は反時計回りを正とする)

 current_angle = i * degree_per_frame

 # 画像を回転 (expand=Trueで回転後の全体を保持、fillcolor='white'で余白を

白に)

 # expand=Falseにすると、回転によって画像がクロップされます

 # fillcolor は背景の色を設定します（元の画像が透過でない場合、影響がない

ことがあります）

 rotated_image = original_image.rotate(

 angle=current_angle,

 resample=Image.Resampling.BICUBIC, # 高品質な補間

 expand=True,

 fillcolor=(255, 255, 255) # 白 (RGB)

)

 # MoviePyが処理できる形式 (PIL Image オブジェクト) でリストに追加

 frames.append(rotated_image)

 # 4. フレームから動画クリップを作成

 # PIL Imageのリストを ImageSequenceClipに渡す

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

 clip = ImageSequenceClip(frames, fps=fps)

 # 5. 動画ファイルを書き出す (MP4形式)

 print(f"動画を {output_video_path} として書き出しています...")

 # 'libx264'は一般的な MP4コーデックです

 clip.write_videofile(

 output_video_path,

 codec='libx264',

 audio_codec='aac',

 fps=fps

)

 print("動画の生成が完了しました！")

--- 設定 ---

以下の値をあなたの環境に合わせて変更してください

1. 入力画像ファイル名

INPUT_IMAGE = "py11-1.png" # 例: 自分で用意したイラストのファイル名

2. 出力動画ファイル名 (一旦 MP4で作成)

OUTPUT_VIDEO_MP4 = "rotating_video.mp4"

3. 動画の設定

VIDEO_DURATION_SECONDS = 5 # 動画の長さ（秒）

VIDEO_FPS = 30 # フレームレート

ROTATION_DEGREES = 360 * 2 # 合計回転角度 (360 * 2 で 2回転)

--- 実行 ---

create_rotating_video(

 input_image_path=INPUT_IMAGE,

 output_video_path=OUTPUT_VIDEO_MP4,

 duration_seconds=VIDEO_DURATION_SECONDS,

 fps=VIDEO_FPS,

 total_rotation_degrees=ROTATION_DEGREES

)

【動画 URL】

 py11-1 rotating video https://youtube.com/shorts/bmz4r28zbg4

次は、画像にランダムに歪みの効果を入れる動画を作るためのプログラムを作るように指示をした。

うまくできた。次は、画像を回転させずに制止させて、画像は５００×５００ピクセルなんだけど、その

範囲でランダムに座標をとって、半径５０くらいの円の範囲が０．５秒間、波を打つような効果をつけ

て、それが終わったら、また違う場所が波打つような５秒くらいの動画を作りたい。

Geminiの回答

動画の生成成功、おめでとうございます！

次に、画像を静止させつつ、ランダムな座標に波紋（波を打つような効果）を時間差でつける動画を作成し

たいのですね。これは画像処理と動画編集のテクニックとしては少し複雑になりますが、moviepy と

numpy、そして画像効果を適用するための数学的な処理を組み合わせることで実現可能です。

ご提示いただいた要件を実現するための基本的なアプローチと、そのための修正案を提示します。

https://youtube.com/shorts/bmz4r28zbg4

🌊 アプローチの概要

1. 静止画の準備: 元の画像を 500 × 500 ピクセルにリサイズまたはクロップします。

2. 時間の定義: 5秒間の動画全体をフレームレート（例：30 FPS）で定義します。

3. 波紋のランダム生成:

o 動画の長さ（5秒）の間に、波紋が発生する時間と中心座標 (x, y) をランダムに決定しま

す。

o 各波紋は 0.5 秒間持続します。

4. フレーム生成: 各時間 t において、現在アクティブな波紋（0.5 秒以内に始まったもの）をすべて特

定し、それらの効果を合成して出力フレームを生成します。

 実現のためのコード修正案

ここでは、moviepyのカスタム効果を適用する最も簡単な方法として、ImageClip と set_make_frame メソッ

ドを使用します。波紋効果自体は、画像をピクセル単位でずらす**ディストーション（歪み）**として実装しま

す。1. 必要なライブラリのインストール

まだインストールしていない場合は、これらが必要です。

Bash

pip install numpy Pillow moviepy

2. 波紋動画生成関数

このコードでは、wave_effect_frame関数が時間 t と波紋の中心、半径に基づいて画像を歪ませる役

割を果たします。

🚨 重要な注意点

1. 計算負荷: この種のピクセルディストーション処理は、フレームごとに $500 \times 500 = 25$ 万ピ

クセルに対して波紋効果の計算（平方根、三角関数、配列操作など）を行うため、非常に計算負荷

が高いです。動画の書き出しには時間がかかることをご承知おきください。

2. WAVE_EVENTS のランダム性: 上記コードでは 0.25 秒間隔で波紋を発生させていますが、完全

にランダムな時間にしたい場合は、np.random.uniform(0, duration) を使って開始時間を生成

し、WAVE_EVENTS の数を調整してください。

3. 波紋の見た目: WAVE_AMPLITUDE や spatial_decay の計算式を変更することで、波紋の広がり方

（速さ、強さ）を調整できます。上記のコードは、中心から外側へ広がるようなディストーション効果を

簡易的にシミュレートしています。

この修正案で、ご希望の「ランダムな座標で波を打つような効果」を持つ動画が作成できるはずです。お試

しください。

生成されたプログラムでは、効果が小さかったので、修正を要求した後のコード

py7-2.py ランダムに半径 100ピクセルの円の範囲で歪ませる

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

import os

import numpy as np

from PIL import Image

from moviepy.editor import ImageClip

MoviePyのバージョンエラー対策のため、音声関連のインポートは削除したまま

--- 設定 ---

INPUT_IMAGE = "py11-1.png"

OUTPUT_VIDEO_MP4 = "wavy_effect_video.mp4"

VIDEO_DURATION_SECONDS = 5

VIDEO_FPS = 30

画像と動画のサイズ (要件に合わせる)

W, H = 500, 500

★ 修正点 1: 波紋の半径を 100 ピクセルに拡大

WAVE_RADIUS = 100

WAVE_DURATION = 0.5 # 0.5 秒間波紋を発生させる

★ 修正点 2: 波紋の強さを 15 ピクセルに調整

WAVE_AMPLITUDE = 15 # ピクセル単位での最大の歪みの強さ

--- ランダムな波紋の生成 ---

イベント頻度を増やし、より多くの波紋が重なるように調整

num_waves = int(VIDEO_DURATION_SECONDS * 4) # 4 倍に増やして、5秒間に約 20個のイ

ベントを発生

WAVE_EVENTS = []

for i in range(num_waves):

 # 0.25秒ごと (1/4秒ごと) に新しい波紋イベントを開始

 start_time = i * 0.25

 if start_time >= VIDEO_DURATION_SECONDS:

 break

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

 # 波紋の中心座標 (x, y) をランダムに決定

 # 中心が画像の端から WAVE_RADIUS 以上離れていることを保証

 center_x = np.random.randint(WAVE_RADIUS, W - WAVE_RADIUS)

 center_y = np.random.randint(WAVE_RADIUS, H - WAVE_RADIUS)

 WAVE_EVENTS.append({

 'start_time': start_time,

 'center': (center_x, center_y)

 })

print(f"生成された波紋イベント数: {len(WAVE_EVENTS)}")

def create_wave_video(input_image_path, output_video_path, duration, fps):

 try:

 # 1. 元画像を開き、ターゲットサイズにリサイズ

 original_image_pil = Image.open(input_image_path).convert('RGB')

 original_image_pil = original_image_pil.resize((W, H))

 original_image_np = np.array(original_image_pil)

 except FileNotFoundError:

 print(f"エラー: 画像ファイルが見つかりません - {input_image_path}")

 return

 except Exception as e:

 print(f"エラー: 画像の読み込み中にエラーが発生しました - {e}")

 return

 # 2. ピクセル座標のメッシュグリッドを事前に作成

 xx, yy = np.meshgrid(np.arange(W), np.arange(H))

 def wave_effect_frame(t):

 """

 時間 t におけるフレームを生成する関数。

 """

 dx = np.zeros((H, W), dtype=np.float32)

 dy = np.zeros((H, W), dtype=np.float32)

 # 3. アクティブな波紋効果を計算し、歪み (dx, dy) を累積する

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

 for event in WAVE_EVENTS:

 t_start = event['start_time']

 cx, cy = event['center']

 # 波紋が現在アクティブかチェック (t_start <= t < t_start +

WAVE_DURATION)

 if t_start <= t < t_start + WAVE_DURATION:

 t_wave = t - t_start

 R = np.sqrt((xx - cx)**2 + (yy - cy)**2)

 # 距離 R を WAVE_RADIUS (100) に正規化

 R_norm = R / WAVE_RADIUS

 # 効果の減衰: 距離が WAVE_RADIUS を超えるピクセルには効果なし

 mask = R_norm < 1.0

 # 時間による波紋の強さ (0.5秒かけて現れて消える)

 t_wave_norm = t_wave / WAVE_DURATION

 strength_time = WAVE_AMPLITUDE * np.sin(np.pi * t_wave_norm)

 # 空間的な減衰 (中心で強く、端で弱く)

 spatial_decay = np.cos(R_norm * np.pi / 2)

 total_distortion = strength_time * spatial_decay * mask

 # 歪みの方向 (中心からの単位ベクトル)

 angle = np.arctan2(yy - cy, xx - cx)

 # x 方向と y方向の歪みを累積

 dx += total_distortion * np.cos(angle)

 dy += total_distortion * np.sin(angle)

 # 4. 参照座標を計算 (元のピクセル位置 + 歪み)

 x_ref = np.clip(xx + dx, 0, W - 1).astype(int)

 y_ref = np.clip(yy + dy, 0, H - 1).astype(int)

 # 5. 歪んだ座標からピクセル値をサンプリング

108

109

110

101

102

103

104

105

106

107

108

109

110

101

102

103

104

105

106

107

108

109

110

101

102

103

104

105

 new_frame = original_image_np[y_ref, x_ref]

 return new_frame

 # 6. MoviePyクリップの作成

 clip = ImageClip(original_image_np, duration=duration).set_fps(fps)

 clip = clip.set_make_frame(wave_effect_frame)

 # 7. 動画ファイルを書き出す

 print(f"動画を {output_video_path} として書き出しています... ({W}x{H}px,

{duration}s)")

 clip.write_videofile(

 output_video_path,

 codec='libx264',

 audio_codec='aac',

 fps=fps,

 preset='medium'

)

 print("動画の生成が完了しました！")

--- 実行 ---

create_wave_video(

 input_image_path=INPUT_IMAGE,

 output_video_path=OUTPUT_VIDEO_MP4,

 duration=VIDEO_DURATION_SECONDS,

 fps=VIDEO_FPS

)

【実行結果】

【動画】

py11-2 wavy effect video https://youtube.com/shorts/-wxMauxBw5s

https://youtube.com/shorts/-wxMauxBw5s

音に合わせてゆがむようにする。

まず、挿入する音楽を作成する。

Gemini が「Suno」や「Stable Audio」を紹介してくれたので、学校の環境でアカウントがとれた「Stable

Audio」を使って作る。ちなみに、Sunoはドラマチックな展開が得意で、「Stable Audio」は精密な音響・

質感が得意だそうだ。

Stable Audio で作る（精密な音響・質感が得意）

こちらはより「音の質感」にこだわった、プロっぽいシネマティックな音を作るのが得意です。

• URL: stableaudio.com

• 始め方: Googleアカウント等でサインイン。

• 手順:

1. プロンプト入力欄に以下の文章を貼り付けます。

2. [Duration]（長さ）を 10秒〜20秒程度に設定。

3. [Generate] をクリック！

Stable Audio 用プロンプト: Experimental Industrial noise, heavy distorted bass drops, metallic

screeching, robotic glitching sounds, cinematic impact, dark futuristic city atmosphere, high

definition, 44.1kHz.

の指示通り、２０秒間の音楽を作り、py11-3.mp3という名前にする。

画像をゆがませるタイミングを一定の時間間隔ではなく、プログラムと一緒においてある MP3ファイル

（py11-3.mp3）の音が鳴るタイミングになるように修正してほしい。で、生成された動画にはそのＭＰ

３ファイルの音が演奏されるようにしてほしい。

とすると、

音のタイミングに合わせて映像を動かすのは、非常に面白い試みですね！

これを実現するには、音声の振幅（ボリューム）を解析し、一定以上の音量がある瞬間に波紋を発

生させるロジックが必要です。

 実装のポイント

1. 音声解析: moviepy の AudioFileClip を使い、指定した時間（fpsごと）の音量を数値化

します。

https://www.google.com/search?q=https://stableaudio.com

2. トリガー判定: 音量が設定したしきい値（Threshold）を超えた瞬間に、新しい波紋の中心座

標を生成します。

3. 音声の統合: set_audio を使い、完成した動画に元の MP3を合成します。

 数十回やり取りをしてプログラムが完成する

py7-3.py 音に合わせて歪ませる

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

import numpy as np

from PIL import Image

import sys

ライブラリの読み込み

try:

 from moviepy.editor import VideoClip, AudioFileClip

except ImportError:

 try:

 from moviepy.video.VideoClip import VideoClip

 from moviepy.audio.io.AudioFileClip import AudioFileClip

 except ImportError:

 from moviepy import VideoClip, AudioFileClip

--- 設定 ---

INPUT_IMAGE = "py11-3.png"

INPUT_AUDIO = "py11-3.mp3"

OUTPUT_VIDEO_MP4 = "audio_reactive_wave.mp4"

VIDEO_FPS = 30

W, H = 500, 500

WAVE_RADIUS = 250 # 波紋の影響範囲

WAVE_DURATION = 0.8 # 1 つの歪みが持続する時間（秒）

def generate_audio_reactive_events(audio_path, fps):

 audio = AudioFileClip(audio_path)

 print("音声を解析中...")

 audio_data = audio.to_soundarray(fps=fps)

 volumes = np.abs(audio_data).mean(axis=1) if len(audio_data.shape) > 1 else

np.abs(audio_data)

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

 # 【修正ポイント 1】しきい値を「最大音量の 70%」まで引き上げる

 # これにより、本当に大きな音（重低音のピーク）だけに絞り込みます。

 dynamic_threshold = np.max(volumes) * 0.7

 events = []

 last_event_time = -WAVE_DURATION

 for i, volume in enumerate(volumes):

 t = i / fps

 # 【修正ポイント 2】反応間隔を 0.1 秒 から 0.3秒 に広げる

 # 連続して波紋が出すぎるのを防ぎ、メリハリをつけます。

 if volume > dynamic_threshold and (t - last_event_time) > 0.3:

 events.append({

 'start_time': t,

 'center': (np.random.randint(100, 400), np.random.randint(100,

400)),

 'volume': volume

 })

 last_event_time = t

 # デバッグ表示：これでいくつイベントが登録されたか確認できます

 print(f"検出された大きな音の数: {len(events)}")

 return events, audio

def create_wave_video():

 WAVE_EVENTS, audio = generate_audio_reactive_events(INPUT_AUDIO, VIDEO_FPS)

 duration = audio.duration

 print(f"解析完了: {len(WAVE_EVENTS)} 個のインパクトを検出しました。")

 # 元画像を読み込み

 img_pil = Image.open(INPUT_IMAGE).convert('RGB').resize((W, H))

 img_np = np.array(img_pil).astype(np.float32)

 xx, yy = np.meshgrid(np.arange(W), np.arange(H))

 def make_frame(t):

 dx = np.zeros((H, W), dtype=np.float32)

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

 dy = np.zeros((H, W), dtype=np.float32)

 for event in WAVE_EVENTS:

 t_rel = t - event['start_time']

 if 0 <= t_rel < WAVE_DURATION:

 cx, cy = event['center']

 R = np.sqrt((xx - cx)**2 + (yy - cy)**2)

 mask = (R < WAVE_RADIUS)

 # 【重要】音量(volume)に比例して歪みの強さを変える

 # 400 の部分を大きくするとより激しく、小さくすると控えめになりま

す

 strength = (event['volume'] * 400) * np.sin(np.pi * (t_rel /

WAVE_DURATION))

 distort = strength * (1 - (R / WAVE_RADIUS)**2)**2 * mask

 angle = np.arctan2(yy - cy, xx - cx)

 dx += distort * np.cos(angle)

 dy += distort * np.sin(angle)

 # ピクセルを移動

 map_x = np.clip(xx + dx, 0, W - 1).astype(int)

 map_y = np.clip(yy + dy, 0, H - 1).astype(int)

 return img_np[map_y, map_x].astype('uint8')

 # VideoClipの作成

 clip = VideoClip(make_frame, duration=duration)

 # FPSと音声の設定（環境に合わせて両方の書き方に対応）

 try:

 clip = clip.set_fps(VIDEO_FPS).set_audio(audio)

 except:

 clip = clip.with_fps(VIDEO_FPS).with_audio(audio)

 print(f"動画の書き出しを開始します（約{duration:.1f}秒）...")

 clip.write_videofile(

 OUTPUT_VIDEO_MP4,

103

104

105

106

107

108

109

110

 codec='libx264',

 audio_codec='aac',

 fps=VIDEO_FPS

)

 print("完了しました！出力ファイル: " + OUTPUT_VIDEO_MP4)

if __name__ == "__main__":

 create_wave_video()

実行時の様子

処理終了

MP4 ファイルが生成されている

【実行結果】

【動画】

py11-3 audio reactive wave https://youtube.com/shorts/FoOLhINJQ8k

【感想】

歪みが大きかったので、修正した。音が小さいところでも動いているように見えるが、無音区間がある音

楽に変えて試してもいいだろう。

https://youtube.com/shorts/FoOLhINJQ8k

