
プログラミング演習３（Python）③ 実践問題

■計算問題を出すプログラムを作る

２つの値を足した数を答えさせる問題を出し、５問回答させて、正解した数を表示するゲームを作り、

徐々にゲーム性を高めていく。

１－１ タイトルを表示する

と入力して、 をクリックすると

「(’)と「’)」の間の文字が表示される。

この要領で、コードを入力して、ボタンを押して実行結果を見ていく

１－２ 変数に値を入れて結果を表示する（変数）

py３-２.ｐｙ

００１

002

003

004

005

006

007

toiban=1

kazu1=2

kazu2=3

print('計算ゲーム')

print(toiban)

print(f'第{toiban}問')

print(f'{kazu1}+{kazu2}=')

変数に値を入れると

と表示される

文字列を表示させるときは

print(' ～ ')

と

文字を「'」で挟んで入れ、

数値や変数の中身を表示させるときは

print(～)

と「'」で挟まずに変数や数値を入れる。

文字列と変数が混在しているときは

print(f'{変数}文字列')

として、変数を{}で挟んで埋め込む

３－３ 答えを入力できるようにして、解答を表示させる（INPUT）

py３-3.ｐｙ

００１

002

003

004

005

006

007

００８

toiban=1

kazu1=2

kazu2=3

print('計算ゲーム')

print(f'第{toiban}問')

kotae=input (f'{kazu1}+{kazu2}=')

print(kotae)

print(kazu1 + kazu2)

を実行すると

と表示され、５を入力して Enter を押すと

と表示される

３－４ 足す値をランダムにする（ライブラリ関数）

関数には「組み込み関数」と「ライブラリ関数」の２種類あり、今回はライブラリ関数を使う。

ライブラリ関数をインポートするには

import モジュール名

と記述し、ランダムな数値を作る関数を含むライブラリは「random」なので、

inport randomと入力する

ライブラリには、そのジャンルの関数が複数種類含まれ、それらの関数を使うコードの書式は

モジュール名・関数名（引数）

となる

ランダムな整数を作るには、

random.randrange(範囲の上限値)

となり、実行すると０から指定した値の範囲でランダムな整数が生成される

例えば範囲の上限値に５を指定すると、０～４の範囲でランダムな整数が表示される。

ここでは１～９９までの整数を表示させたいので、

random.randrange(99)

とすると、０～９８までの整数になるので、

random.randrange(99)+1

とする

変数の設定でこれらのコードを入れると

py３-４.ｐｙ

００１

002

003

004

005

006

007

008

００９

import random

toiban=1

kazu1=random.randrange(99)+1

kazu2=random.randrange(99)+1

print('計算ゲーム')

print(f'第{toiban}問')

kotae=input (f'{kazu1}+{kazu2}=')

print(kotae)

print(kazu1 + kazu2)

実行すると

と表示される

３－５ 採点をする（IF文）

入力された回答と解答を照らし合わせて、同じだったら正解、間違っていたら間違いと表示させるとき

は、

分岐のコードを入れる

書式は

If 条件式:

 成立する場合の処理

else:

 成立しない場合の処理

となる。

インデント（左からの余白）を入れないと、if文が成立しないので注意する。

条件式の条件は「比較演算子」という仕組みを使って書き、２つの値を比較して、成立するか成立しない

かを判定する。

表 主な比較演算子

演算子 意味

== 等しい

!= 等しくない

> 大きい

>= 以上

< 小さい

<= 以下

書式は

値１ 比較演算子 値２

となり、

例をあげると

1 == 1 の結果は True

1 != 1 の結果は False

1 > 2 の結果は False

1 < 2 の結果は True

となる。

Print(1 == 1)

を実行すると

Trueが表示される

計算ゲームでは

kotae の値と kazu1＋kazu2 の値が同じだったら正解、そうでなかったら不正解と表示すればいいのだか

ら、条件式を kotae == (kazu1 + kazu2)として、True のところに正解と表示するコード、Falseのとこ

ろに不正解と表示するコードを書けばいいので、

py３-5.ｐｙ

００１

002

003

004

005

006

007

008

００９

０１０

０１１

０１２

０１３

import random

toiban=1

kazu1=random.randrange(99)+1

kazu2=random.randrange(99)+1

print('計算ゲーム')

print(f'第{toiban}問')

kotae=input (f'{kazu1}+{kazu2}=')

print(kotae)

print(kazu1 + kazu2)

if kotae == (kazu1+kazu2):

 print('正解')

else:

 print('不正解')

として実行すると

となる

これは input関数の戻り値は文字列と決められているので、kotaeの 88は文字列の 88なので違いものと

判定されて不正解となる。

なので、

kotae=input (f'{kazu1}+{kazu2}=')

で kotaeに文字列が入らないように

数値に変換する int関数を使う

int関数の書式は

int(文字列)

なので、

kotae=int(input (f'{kazu1}+{kazu2}='))

と変更すればよい。

実行すると

同じ値だったら正解

間違っていたら不正解が表示される

３－６ 繰り返し処理で５問に増やす（for文）

第１問の答え合わせが終わったら、第２問の問題が表示されて、第５問まで繰り返す処理を考える。

２問目になったら、toibanの値を１つ増やし後は同じ処理をする。

反復のコードは

for 変数名 in range(回数)：

 処理

で表す。処理の前のインデントを忘れないように注意する。

for toiban in range(5)

 print（toiban）

とすると、

と表示される。toibanは 1,2,3,4,5としたいので、

まず、5まで繰り返すように

for toiban in range(6)

 print（toiban）

として、１から始めるように

for toiban in range(1,6):

 print(toiban)

と記述する。

タイトルの「計算ゲーム」の文字列は初めだけ入れればいいので、繰り返し文の前に記述して、

py３-６.ｐｙ

００１

002

003

004

005

006

007

008

００９

０１０

０１１

０１２

013

014

import random

print('計算ゲーム')

for toiban in range(1,6):

 kazu1=random.randrange(99)+1

 kazu2=random.randrange(99)+1

 print(f'第{toiban}問')

 kotae=int(input

(f'{kazu1}+{kazu2}='))

 print(kotae)

 print(kazu1 + kazu2)

 if kotae == (kazu1 + kazu2):

 print('正解')

 else:

 print('不正解')

と入力して、実行すると右のようになる。

実行した結果

３－７ 結果の表示

最後に５問中何問正解できたか表示させるために、正解した数を変数 seikaisuを用意して、正解すると

その数が１つ増えるようにする。

初めに seikaisu=0として、正解するたびに数が１ずつ増えるようにすればいいので、if文の同じだった

場合の処理に seikaisu += 1を入れる。seikaisu = seikaisu + 1 でもいいが、「+=」の演算子を使った

方が早く入力ができる。なお１ずつ減らしたいときは a -= 1と入力する

py３-７.ｐｙ

００１

002

003

004

005

006

007

008

００９

０１０

０１１

０１２

013

014

０１５

０１６

import random

seikaisu = 0

print('計算ゲーム')

for toiban in range(1,6):

 kazu1=random.randrange(99)+1

 kazu2=random.randrange(99)+1

 print(f'第{toiban}問')

 kotae=int(input (f'{kazu1}+{kazu2}='))

 print(kotae)

 print(kazu1 + kazu2)

 if kotae == (kazu1 + kazu2):

 print('正解')

 seikaisu += 1

 else:

 print('不正解')

print(f'{toiban}問中{seikaisu}問正解しました')

と入力して、実行すると右のようになる。

実行した結果

３－８ 結果の詳細の表示（リスト）

採点のたびに結果をリストに保管して、最後に表示する

空のリストは

 リスト = [] または リスト = list()

と書ける

このリストに値を代入するときは、

要素を追加していく append(値)でもいいし、場所を指定して値を入れていく insert(位置,値)を使って

も書ける

ここでは、○と×を記録するためのリスト marubatuを作るために

marubatu = []

と初めに書いておき、そのリスト内の場所を指定して値を入れる insert メソッドを使って○または×を

記録していく。

Insertメソッドの書式は

リスト.insert(位置，要素)

と書くので、正解したときに、marubatuリストの要素番号 toibanの場所に○を代入するには

marubatu.insert(toiban,'○')

と書き、

不正解の時は、

marubatu.insert(toiban,'×')

と書く。

なお、リストの要素番号は０から始まるが、toiban変数は１から始まるので、marubatu[1]の場所から記

録されていき、matubatu[0] は空要素になる。また、リスト名[要素番号]=値 という書き方は、すでに

値が入っているときに上書きする書き方なので、ここでは使えない。

次にリストの結果を表示する場合、リストと for文を組み合わせた書式の

for 変数名 in リスト名:

 処理

が使えるので、

for listout in marubatu:

 print(listout)

と書いて、結果の詳細を出力する。

初めに問題数を設定できるようにコードを加えて実行すると、

py３-８.ｐｙ

００１

002

003

004

005

006

007

008

００９

０１０

０１１

０１２

013

014

０１５

０１６

０１７

０１８

０１９

０２０

０２１

０２２

import random

seikaisu = 0

marubatu = []

print('計算ゲーム')

mondaisu=int(input ('問題数は？'))

for toiban in range(1,mondaisu+1):

 kazu1=random.randrange(99)+1

 kazu2=random.randrange(99)+1

 print(f'第{toiban}問')

 kotae=int(input (f'{kazu1}+{kazu2}='))

 print(kotae)

 print(kazu1 + kazu2)

 if kotae == (kazu1 + kazu2):

 print('正解')

 seikaisu += 1

 marubatu.insert(toiban, '○')

 else:

 print('不正解')

 marubatu.insert(toiban, '×')

for listout in marubatu:

 print(listout)

print(f'{toiban}問中{seikaisu}問正解しました')

と入力して、実行すると右のようになる。

実行した結果

[＋α]オブジェクト指向

Python にはオブジェクトの仕組みが使われており、これまで登場した文字列とリストはオブジェクト

の形式になっている。オブジェクトはデータと関数をまとめて扱う仕組みで、データとは数値や文字列

などで、関数とはよく使う処理をまとめてソースコードを簡潔に書けるようにしたものである。イメー

ジとしては下図のようになる。

メソッドの基本的な書式は

オブジェクト．メソッド名（引数）

となり、

marubatu.insert(toiban,'○')

と書いた場合、

matubatuというリストのオブジェクトに対して、insertというメソッドを使っていて、そのメソッドの

仕様により、第１引数のリストの要素番号 toiban の場所に、第２引数の「○」という文字列を入れる。

という操作をしている。

オブジェクト

メソッド１ 属性１

メソッド２ 属性２

メソッド３ 属性３

データ（値） 関数 … …

３－９ 四則演算のそれぞれの計算をするオリジナルの関数を作って、結果を出力する。（組み込み関数）

 ここでは、初めに四則演算のどの演算をするのか決めて、その演算をするための関数を呼び出して、計

算結果を出す。

関数の書式は

def 関数名（引数名１,引数名２…）

 処理

 return 戻り値

と書いて定義をして、

 関数名（引数）

と書いて実行をする。

初めに演算の種類を判別できるように、enzan変数を用意して、演算に合わせて、足し算なら１，引き算

なら２というように値を設定する。その設定の値に合わせて、呼び出す関数を変える。最後の結果で使う

seikaisuや toibanの変数は関数の中でも外でも使っているので、関数で global seikaisu,toibanと宣

言してグローバル変数として定義している。割り算の答えは割り切れなくことがあるので、商（整数部）

のみ答えさせている。商は「//」の演算子で求められ、他に商を取り出す方法として、math モジュール

をインポートして math.modf()などで読み込ませてから取り出す方法など、いくつかある。

Py３-９.ｐｙ

００１

002

003

004

005

006

007

008

００９

０１０

０１１

０１２

013

014

０１５

０１６

０１７

０１８

import random

seikaisu = 0

toiban = 1

marubatu = []

def wa():

 global seikaisu,toiban

 for toiban in range(1,mondaisu+1):

 kazu1=random.randrange(99)+1

 kazu2=random.randrange(99)+1

 print(f'第{toiban}問')

 kotae=int(input (f'{kazu1}+{kazu2}='))

 print(kotae)

 print(kazu1 + kazu2)

 if kotae == (kazu1 + kazu2):

 print('正解')

 seikaisu += 1

 marubatu.insert(toiban, '○')

 else:

０１９

０２０

０２１

０２２

０２３

０２４

０２５

０２６

０２７

０２８

０２９

０３０

０３１

０３２

０３３

０３４

０３５

０３６

０３７

０３８

０３９

０４０

０４１

０４２

０４３

０４４

０４５

０４６

０４７

０４８

０４９

０５０

０５１

０５２

０５３

０５４

０５５

０５６

 print('不正解')

 marubatu.insert(toiban, '×')

def sa():

 global seikaisu,toiban

 for toiban in range(1,mondaisu+1):

 kazu1=random.randrange(99)+1

 kazu2=random.randrange(99)+1

 print(f'第{toiban}問')

 kotae=int(input (f'{kazu1}-{kazu2}='))

 print(kotae)

 print(kazu1 - kazu2)

 if kotae == (kazu1 - kazu2):

 print('正解')

 seikaisu += 1

 marubatu.insert(toiban, '○')

 else:

 print('不正解')

 marubatu.insert(toiban, '×')

def seki():

 global seikaisu,toiban

 for toiban in range(1,mondaisu+1):

 kazu1=random.randrange(10)+1

 kazu2=random.randrange(10)+1

 print(f'第{toiban}問')

 kotae=int(input (f'{kazu1}*{kazu2}='))

 print(kotae)

 print(kazu1 * kazu2)

 if kotae == (kazu1 * kazu2):

 print('正解')

 seikaisu += 1

 marubatu.insert(toiban, '○')

 else:

 print('不正解')

 marubatu.insert(toiban, '×')

def shou():

 global seikaisu,toiban

 print('整数部のみ（例；3.5なら 3)')

 for toiban in range(1,mondaisu+1):

０５７

０５８

０５９

０６０

０６１

０６２

０６３

０６４

０６５

０６６

０６７

０６８

０６９

０７０

０７１

０７２

０７３

０７４

０７５

０７６

０７７

０７８

０７９

０８０

０８１

０８２

０８３

０８４

０８５

 kazu1=random.randrange(10)+1

 kazu2=random.randrange(10)+1

 print(f'第{toiban}問')

 kotae=int(input (f'{kazu1}/{kazu2}の商は？'))

 print(kotae)

 print(int(kazu1 // kazu2))

 if kotae == int(kazu1 // kazu2):

 print('正解')

 seikaisu += 1

 marubatu.insert(toiban, '○')

 else:

 print('不正解')

 marubatu.insert(toiban, '×')

print('計算ゲーム')

mondaisu=int(input ('問題数は？'))

enzan=int(input ('どの種類？(和は 1,差は 2,積は 3,商は 4)'))

if enzan == 1:

 wa()

elif enzan == 2:

 sa()

elif enzan == 3:

 seki()

elif enzan == 4:

 shou()

else:

 print('1-4の数値を入力してください')

for listout in marubatu:

 print(listout)

print(f'{toiban}問中{seikaisu}問正解しました')

として、実行すると次のようになる。

実行した結果

【課題】

これまで作ってきたプログラムを改良して、どのように改良したか、わかりやすく説明しなさい。

例えば、演算の種類に合わせて、関数を呼び出して、関数側でほとんどの処理をしているが、入力と出力

をメインのコードで処理させおいて、関数側に値を受け渡して、演算の結果を返すようにすると、全体的

に簡潔なコードが少なくなる。

（参考）和を出す関数を実装したソース

他にも、input に制限時間を設けてゲーム性を高めたり、詳細のリストや結果をファイルに書き出して、

過去の履歴を残せるようにして、成長の度合いを確認したり、よく間違う場所を把握したりすることが

できるようにしてもいいだろう。

参考 立山秀利著「高校生からの Python入門」（株式会社ジャムハウス）

 ※計算ドリルアプリより本教材を着想した

