
プログラミング演習３（Python）④ データ処理ライブラリ

１．ライブラリのインストール方法
Python では pip というパッケージ管理ツールを使って、ライブラリをインストール・管理

できる。 Anaconda を使用している場合は conda というコマンドを使ってインストールで

きる。

例 1-1 ターミナルを開いてコマンドを実行

pip install <ライブラリ名>

例 1-2 Google Colaboratory の Notebookの場合

!pip install <ライブラリ名>

例 1-3 Anacondaを使用している場合

conda install

ライブラリ一覧は

pip list

で確認できる

２．Numpy ～データの計算で使われるライブラリ～

Notebook や Python ファイルに、下記のようにライブラリを読み込む

import numpy as np

この宣言後は、asで指定する名前で numpyモジュールを使用することができる

例２－１ 配列を使用する場合

arr = np.array([1,2,3,4])

arr

実行結果

array([1,2,3,4])

type()で型を確認する

実行結果

<class 'numpy.ndarray'>

多次元配列は次のように

リストの中にリストを持つように定義する

※２行４列の配列の場合

arr2 = np.array([[1,2,3,4][5,6,7,8]])

arr2

実行結果

array([1,2,3,4][5,6,7,8])

shape を使うと、どのような配列構造か確認できる

arr2.shape

実行結果

(2,4)

■要素へのアクセス

array の各要素はインデックスを指定して、

取り出せる。

先ほどの２行４列の配列は０を指定すると

１行目が取り出せる

print(arr2[0])

実行結果

[1,2,3,4]

同様に１を指定すると２行目を選択できる

print(arr2[1])

実行結果

[5,6,7,8]

行の後に列を指定して各要素を選択できる

print(arr2[1][2])

実行結果

7

スライスと言う：で範囲指定することもできる

print(arr2[1][1:3])

実行結果

[6,7]

■演算

numpy で作成したベクトルは、

次のように要素同士の演算を行うことができる

arr = np.array([1,2,3,4])

arr + arr

実行結果

array([2,4,6,8])

arr * arr

実行結果

array([1,4,9,16])

5 + arr

実行結果

array([6,7,8,9])

4 * arr

実行結果

array([4,8,12,16])

array 内の要素に対して演算を行うメソッド

arr = np.array([1,2,3,4])

和を計算する

arr.sum()

実行結果

10

平均を計算する

arr.mean()

実行結果

2.5

最大値を求める

arr.max()

実行結果

4

いろいろな初期化

arr=np.arange(10)

arr

実行結果

array([0,1,2,3,4,5,6,7,8,9])

reshape()を使うと多次元配列に変更できる

arr.reshape(2,5)

実行結果

array([[0,1,2,3,4],

[5,6,7,8,9]])

データ分析をするうえで

numpy を使う機会は非常に多い

■３．Pandas ～データ操作に用いられるライブラリ～

Pandasは Python でデータ分析を行うためのライブラリで、主にデータの前処理を行うた

めに使われることが多く、この Pandasと scikit-learnという機械学習を行うためのライブ

ラリはシームレスにつながっているため、分析を行う上で必須のライブラリとなっている。

Pandas は pdという名前を付けて importすることが多い

import pandas as pd

■Series

pandas は、Seriesと DataFrame という２つのデータ構造で

処理をして、

Series は一次元のデータ構造を持つ

a = pd.Series([2,3,4,5])

a

実行結果

0 2

1 3

2 4

3 5

dtype: int64

インデックスが左側、データの値が右側に出力される

numpy と同様に index を指定する

a[0]

実行結果

2

a[1:3]

実行結果

1 3

2 4

dtype: int64

算術メソッドを使って、平均や合計を求めることができる

a.sum()

実行結果

3.5

■DataFrame

DataFrame は多次元データをテーブル形式で表現できる

実際のデータ分析では、多次元データを扱うことがほとんど

のため、Series 型よりもこちらの DataFrame 形式で

Pandas を扱うことの方が多い。

col_1 = np.array(['A','B','A','D','E'])

col_2 = np.array([1,2,3,4,5])

col_3 = np.array([6,7,8,9,10])

df = pd.DataFrame({'col_1':col_1,'col_2':col_2,'col_3':col_3})

df.head()

実行結果

 col_1 col_2 col_3

0 A 1 6

1 B 2 7

2 A 3 8

3 D 4 9

4 E 5 10

df.shape

(5,3)

データフレームの各列の取り出しは

df['col_name'] または df.col_name

df['col_1']

実行結果

0 A

1 B

2 A

3 D

4 E

Name: col_1, dtype: object

番号を指定して抽出するときは ilocを使う

df.iroc[2]

実行結果

col_1 A

col_2 3

col_3 7

Name: 2, dtype:object

２以降の場合

df.iloc[2:]

実行結果

 col_1 col_2 col_3

2 A 3 7

3 D 4 8

4 E 5 9

３行２列の要素を取り出す

df.iloc[2,1]

実行

3

col_1 が A のものだけ取り出す

df[df['col_1'] == 'A']

実行結果

 col_1 col_2 col_3

0 A 1 5

2 A 3 7

query()を使ってもでる

df.query('col_1 == "B"')

実行結果

 col_1 col_2 col_3

1 B 2 6

■便利なメソッド

decsripe()を使用することで、

各カラムの平均値や標準偏差、四分位数

といった記述統計量を求めることができる。

df.describe()

実行結果

 col_2 col_3

count 5.000000 5.000000

mean 3.000000 8.000000

std 1.581139 1.581139

min 1.000000 6.000000

25% 2.000000 7.000000

50% 3.000000 8.000000

75% 4.000000 9.000000

max 5.000000 10.000000

df.info()

実行結果

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 5 entries, 0 to 4

Data columns (total 3 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 col_1 5 non-null object

 1 col_2 5 non-null int64

 2 col_3 5 non-null int64

dtypes: int64(2), object(1)

memory usage: 248.0+ bytes

各カラムに対して、sum()や mean()で

合計や平均が求められる

print(df['col_2'].sum())

print(df['col_2'].mean())

実行結果

15

3.0

sort_values()でデータの並び替えをする

ascending でデフォルトが昇順

fault で降順でソートできる。

df.sort_values('col_2',ascending=False)

 col_1 col_2 col_3

4 E 5 10

3 D 4 9

2 A 3 8

1 B 2 7

0 A 1 6

欠損値を外したいときは dropna()

欠損値を置換したいときは fillna()を

使用する

A を NaNに置き換える

df = df.replace('A', np.nan)

print(df)

実行結果

 col_1 col_2 col_3

0 NaN 1 6

1 B 2 7

2 NaN 3 8

3 D 4 9

4 E 5 10

df.dropna()

実行結果

 col_1 col_2 col_3

1 B 2 7

3 D 4 9

4 E 5 10

df.fillna(0)

実行結果

 col_1 col_2 col_3

0 0 1 6

1 B 2 7

2 0 3 8

3 D 4 9

4 E 5 10

データの読み込み

一般的に CSV 形式を Pandas 形式に取り込む

事が多い。

CSV 形式の読み込み read_csv()

sep で区切り文字の指定

names でカラム名

df=pd.read_csv('filename',sep='\t',names=[col1,col2,..])

CSV 形式の書き出し

index でデータフレームの index を含めるかの設定

df=to_csv('filename',sep='\t',index=False)

――――

４．可視化ライブラリ

代表的な可視化ライブラリである Matplotlibと seabornの

可視化ライブラリを紹介する

from matplotlib import pyplot as plt

import seaborn as sns

plt.style.use('ggplot')

%matplotlib inline

from sklearn.datasets import load_iris

import pandas as pd

ここでは iris データを使って描画する

irisデータについて

setosa「セトーサ」と読む、日本名：ヒオウギアヤメ

versicolor「ヴァーシカラー」と読む、日本名：ブルーフラッグ

virginica「ヴァージニカ」と読む、日本名：ヴァージニカ

の３種類のあやめのデータに

がく片長、がく片幅、花びら長、花びら幅

という４つの情報が用意されている

データセット irisの参考 URL

＠ITメディア「Iris Dataset：あやめ（花びら／がく片の長さと幅の 4項目）

の表形式データセット」

https://atmarkit.itmedia.co.jp/ait/articles/2206/13/news032.html

みんなのデータサイエンス「Iris データセット」

https://minnanods.com/iris-dataset/

irisデータを読み込む

iris = load_iris()

df=pd.DataFrame(iris.data,columns=iris.feature_names)

df['target']=iris.target

df.loc[df['target']==0,'target']="setosa"

df.loc[df['target']==1,'target']="versicolor"

df.loc[df['target']==2,'target']="virginica"

ヒストグラムを描画する

matplotlibでヒストグラムを作成するには plt.hist()を使う

タイトルやｘ軸、ｙ軸のラベル名を追加することもできる

seabornでは distplot()を使う

plt.title('histogram')

plt.xlabel('xlabel')

plt.ylabel('ylabel')

plt.hist(df['sepal length (cm)'])

plt.show()

sns.distplot(df['sepal length (cm)'])

散布図を描画する

matplolib では scatter()

を使用する

plt.scatter(df['sepal length (cm)'],df['petal length (cm)'])

plt.show()

折れ線グラフを描画する

x=[1,2,3,4]

y=[2,4,3,8]

plt.plot(x,y)

plt.show()

