
プログラミング演習３（Python）⑦ 音声処理モジュール Pyo

音声処理モジュール Pyoを使うと、音声信号の生成、フィルター・遅延・合成などの波形の処理が簡単に

できる。なお、今回の演習も Google Colabではなく、ローカル環境で行う。

・PYOのインストール方法

コマンドプロンプト等のコマンドラインから

pip install pyo

もしくは

py -m pip install pyoと入力して Enterを押す。

http://ajaxsoundstudio.com/pyodoc/download.html

には、Python3.8がインストールされている場合は

py -3.8 -m pip install --user pyo

と入力すると書いてあるが、上記の書き方でインストールできるならそれでいい。。

他に、何か必要なライブラリがある場合はものがある場合は、

pip install ライブラリ名

と入力する

例えば、GUIライブラリの Wxpython が必要だというメッセ―ジが出た時は、

pip install wxPython

と入力して Enterキーを押す。

（実行結果）

ヴァージョンが古いというメッセージが気になるときは、

py -m pip install –upgrade pip

と入力して Enterキーを押して、最新のヴァージョンにする。

http://ajaxsoundstudio.com/pyodoc/download.html

py7-1.py 正弦波の音を鳴らす

001

002

003

004

005

006

007

008

009

from pyo import *

s = Server().boot() # PYOのサーバを立ち上げる

s.amp = 0.1 # 20 dBゲインを下げる

a = Sine().out() # 正弦波を生成し、out()で出力する

a.ctrl(title="SIN Wave") # パラメータ編集スライダー

sp = Scope(a) # 波形表示

sp.setGain(0.5) # 縦軸の倍率 0.5 => -6dB

sp.poll(1) # startボタンを押すと波形が表示される

s.gui(locals()) # GUIで終了処理などができるようにする

（説明）

１行 PYOモジュールのすべてをインポートする

２行 PYOモジュールのサーバーを立ち上げる

３行 サーバーのゲインを下げる

４行 正弦波を生成し、out（）で出力して、aに代入する

５行 aの内容をスライダーでコントロールできるようにする。タイトルを SIN Wave とする

６行 ａの波形をｓｐに代入する

７行 波形のゲインを０．５にする

８行 startボタンを押すと波形が表示される

９行 波形を表示させる

（実行結果）

Ｐｙｏサーバーの Startボタンを押すと正弦波が発信する

・正弦波のパラメータの設定

スライダを操作して周波数や振幅などが変えられる

波形をＳｃｏｐｅで表示させる

Startボタンを押す前 押した後

波形を表示させた後、スライダーの設定を変えると波形が変わる

py7-2.py ＭＩＤＩキーボードを作成して音を鳴らし、周波数分布（スペクトラム）表示をする

001

002

003

004

005

006

007

008

009

010

From pyo import * # pyoモジュールをすべて読み込む

s = Server().boot(); s.start() # 「サーバ」を作成・開始

notes = Notein(poly=10, scale=0, first=0, last=127, channel=0, mul=1)

freqs = MToF(notes["pitch"]) # 周波数や強度などの設定

amps = Port(notes["velocity"], risetime=0.005, falltime=0.5, mul=1)

notes.keyboard() # 画面上で操作できる「キーボード」を生成する

osc = Sine(freq=freqs, mul=amps) # 所定の周波数・強度の値で正弦波生成

out = osc.mix(1).mix(2).out() # 出力を１系統にまとめた上で、左右に複製

sp = Scope(out) # 波形表示

spectrum = Spectrum(out) # 周波数分布表示

011

012

013

sp.setGain(1)

sp.poll(1)

s.gui(locals())

（説明）

２行 s.start()で初めから音が出るようにしている。ただし、ここではキーボードで入力をしないと音

が出ない。

３～５行 MIDIのチャンネルの設定などをして、４，５行で周波数や強度などの設定をする

６行 MIDIキーボードを作成する

７行 所定の周波数などの値を、キーボードなどから得た値から得られるようにする。

８行 出力を１系統にまとめて、左右に複製する

９行 outの波形を表示する

１０行 outの周波数分布を表示する

１１行 スコープの入力の設定

（実行結果）

１行目に s.start()が入っているので、Startボタンが押された状態になる。

初めの設定では「HOLD」が ONになっているので、押しっぱなしの状態になる。「HOLD」をクリックして解

除した後、ボタンを離せば、時間と共に減衰する。

py7-3.py コーラス、ディレイ、リバーブを組み込む

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

from pyo import * # pyoモジュールをすべて読み込む

s = Server().boot(); s.start() # 音声処理を実行する「サーバ」を作成・開始

notes = Notein(poly=10, scale=0, first=0, last=127, channel=0, mul=1)

freqs = MToF(notes["pitch"])

amps = Port(notes["velocity"], risetime=0.005, falltime=0.5, mul=1)

notes.keyboard() # 画面上で操作できる「キーボード」を生成する

osc = Sine(freq=freqs, mul=amps)# 所定周波数・強度で正弦波生成

out = osc.mix(1).mix(2).out() # 出力を１系統にまとめた上で、左右に複製

chorus = Chorus(out,depth=[1.5,1.6]).out(); chorus.ctrl()

delay = Delay(chorus,delay=[.15,.16]).out(); delay.ctrl()

reverb=WGVerb(delay, feedback=[.7,.7]).out(); reverb.ctrl()

sp = Scope(out) # 波形表示

spectrum = Spectrum(out) # 周波数分布表示

sp2 = Scope(reverb) # 出力波形を表示

spectrum2 = Spectrum(reverb) # 周波数分布を表示

sp.setGain(1)

sp.poll(1)

sp2.setGain(1)

sp2.poll(1)

s.gui(locals())

（解説）

９行 コーラス １０行 ディレイ １１行 リバーブ の機能を付けた

１８，１９行 効果を付けた波形を別のスコープで表示させた

（実行結果）

正弦波の波形と周波数分布

効果を入れた後の波形と周波数分布

py7-4.py キーボードで作った正弦波に、マイクからの入力を合成する

001

002

003

004

005

006

007

008

009

010

011

012

013

014

from pyo import * # pyoモジュールをすべて読み込む

s = Server().boot(); s.start() # 音声処理を実行する「サーバ」を作成・開始

notes = Notein(poly=10, scale=0, first=0, last=127, channel=0, mul=1)

freqs = MToF(notes["pitch"])

amps = Port(notes["velocity"], risetime=0.005, falltime=0.5, mul=1)

notes.keyboard() # 画面上で操作できる「キーボード」を生成する

osc = Sine(freq=freqs, mul=amps)# 所定周波数・強度で正弦波生成

mic = Input().play(); mic.ctrl() # マイク入力

out = (osc+mic).mix(1).mix(2).out() #マイクの入力をまとめた上で、左右に複製

sp = Scope(out)# 波形表示

spectrum = Spectrum(out) #周波数分布表示

sp.setGain(0.5) #ゲインの調整

sp.poll(1)

s.gui(locals())

（解説）

８行 マイク入力

９行 マイク入力とオシレータの波形（MIDIキーボードを操作して作った正弦波）と合成する

（実行結果）

マイクのそばで音を立てると、正弦波にノイズが入る

ディスプレイ全体

（参考図書）平林純 著「なんでも PYTHONプログラミング」（技術評論社）

（参考サイト）MIDI & AUDIO LAB 「Pythonモジュール PYOを使ってみる」

 https://webmidiaudio.com/npage514.html

